Low-cost porous carbon materials prepared from peanut red peels for novel zinc-ion hybrid capacitors

被引:11
|
作者
Sun, Zhichao [1 ]
Jiao, Xinyu [1 ]
Chu, Siyu [1 ]
Li, Zijiong [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat, Key Lab Magnetoelectron Informat Funct Mat Henan P, Zhengzhou 450002, Peoples R China
来源
CHEMISTRYSELECT | 2023年 / 8卷 / 47期
关键词
Biomass; Energy storage; Porous carbon; Peanut red skin; Zinc-ion hybrid supercapacitors; ENERGY-STORAGE; BATTERIES; SUPERCAPACITORS; ELECTROLYTE; CHALLENGES; FUTURE; LIFE;
D O I
10.1002/slct.202304071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion hybrid capacitors combine the advantages of supercapacitors and batteries and are a promising electrochemical energy storage device. In order to meet the demand for materials with higher energy density and longer cycle time, there is an urgent need to find a zinc-ion supercapacitor cathode material with lower cost and better electrochemical performance. In this experiment, low-cost agricultural peanut red skin waste was converted into biomass-derived carbon material (PSR-X) with high specific surface area, larger pore volume, and more homogeneous pore size distribution through carbonisation and KOH activation. Due to the interaction of these properties, PSR-X as the cathode material has higher specific capacity and better multiplicity performance than the zinc-ion capacitor prepared from the initial carbonised PSR as the cathode material. In addition, the PSR-4-based zinc-ion capacitor has an excellent specific capacity of 86 mAh g-1 at a current density of 0.1 A g-1, a high capacity retention of 55 % even at a high current density of 30 A g-1, and a high energy density of 66.16 Wh kg-1 at a power density of 218.1 W kg-1. What is more gratifying is that the capacitor exhibits an ultra-long cycle life, with a high capacity retention rate of 85 % after 8,000 charge/discharge cycles at a current density of 1 A g-1. Cathode materials for zinc-ion hybrid supercapacitors with high specific surface area and uniform pore size distribution were prepared by a simple carbonisation and KOH activation method using low-cost peanut red skin agricultural waste. In addition, the zinc-ion hybrid capacitor assembled with the derived carbon material as the cathode material has high specific capacity and energy density, excellent multiplicity performance and cycling stability. It not only improves the electrochemical performance of the capacitor during the energy storage process, but also presents more possibilities for the green and safe output of zinc-ion capacitors.image
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors
    Zhang, Wenli
    Yin, Jian
    Jian, Wenbin
    Wu, Ying
    Chen, Liheng
    Sun, Minglei
    Schwingenschlogl, Udo
    Qiu, Xueqing
    Alshareef, Husam N.
    NANO ENERGY, 2022, 103
  • [2] Materials Development in Hybrid Zinc-Ion Capacitors
    Jagadale, Ajay Dattu
    Rohit, Ravichandran Chitra
    Shinde, Surendra Krushna
    Kim, Dae-Young
    CHEMNANOMAT, 2021, 7 (10) : 1082 - 1098
  • [3] Polyacrylonitrile Derived Porous Carbon for Zinc-Ion Hybrid Capacitors with High Energy Density
    Fan, Xiaowen
    Liu, Penggao
    Ouyang, Baixue
    Cai, Ruizheng
    Chen, Xinxin
    Liu, Xicang
    Liu, Weifang
    Wang, Jue
    Liu, Kaiyu
    CHEMELECTROCHEM, 2021, 8 (18) : 3572 - 3578
  • [4] Recent advances of cathode materials for zinc-ion hybrid capacitors
    Liu, Yuan
    Wu, Lijun
    NANO ENERGY, 2023, 109
  • [5] Boosting the Capacitance of Aqueous Zinc-Ion Hybrid Capacitors by Engineering Hierarchical Porous Carbon Architecture
    Li, Yanzhen
    Zhang, Xin
    Lu, Tong
    Zhang, Ying
    Li, Xue
    Yu, Dengfeng
    Zhao, Gongyuan
    BATTERIES-BASEL, 2023, 9 (08):
  • [6] Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors
    Li, Heng-Xiang
    Shi, Wen-Jing
    Zhang, Xiaohua
    Liu, Ying
    Liu, Ling-Yang
    Dou, Jianmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 667 : 700 - 712
  • [7] Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors
    Wu, Jinpeng
    Liu, Rurong
    Li, Min
    Luo, Xianyou
    Lai, Wende
    Zhang, Xinren
    Li, De
    Yu, Feng
    Chen, Yong
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [8] Hierarchically Porous Carbon Rods Derived from Metal-Organic Frameworks for Aqueous Zinc-Ion Hybrid Capacitors
    Li, Hongxia
    Liao, Quanxing
    Liu, Yongdong
    Li, Yunfeng
    Niu, Xiaohui
    Zhang, Deyi
    Wang, Kunjie
    SMALL, 2024, 20 (15)
  • [9] N/O-functionalized ultrathin carbon nanosheets for zinc-ion hybrid capacitors
    Zhang, Zhiran
    Wang, Huaiyu
    Ouyang, Dandan
    Chen, Dongxu
    Liu, Yu
    Su, Zhi
    Yin, Jian
    Zhu, Hui
    Yin, Jiao
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [10] Porous Carbon Derived from Sweet Potato Biomass as Electrode for Zinc-ion Hybrid Supercapacitors
    Hu, Hongyu
    Wu, Guojiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (09): : 1 - 9