Learning skillful medium-range global weather forecasting

被引:420
作者
Lam, Remi [1 ]
Sanchez-Gonzalez, Alvaro [1 ]
Willson, Matthew [1 ]
Wirnsberger, Peter [1 ]
Fortunato, Meire [1 ]
Alet, Ferran [1 ]
Ravuri, Suman [1 ]
Ewalds, Timo [1 ]
Eaton-Rosen, Zach [1 ]
Hu, Weihua [1 ]
Merose, Alexander [2 ]
Hoyer, Stephan [2 ]
Holland, George [1 ]
Vinyals, Oriol [1 ]
Stott, Jacklynn [1 ]
Pritzel, Alexander [1 ]
Mohamed, Shakir [1 ]
Battaglia, Peter [1 ]
机构
[1] Google DeepMind, London, England
[2] Google Res, Mountain View, CA USA
关键词
PRECIPITATION; SEEPS;
D O I
10.1126/science.adi2336
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy but does not directly use historical weather data to improve the underlying model. Here, we introduce GraphCast, a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables for the next 10 days at 0.25(degrees) resolution globally in under 1 minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclone tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting and helps realize the promise of machine learning for modeling complex dynamical systems.
引用
收藏
页码:1416 / 1421
页数:6
相关论文
共 74 条
[1]  
Alet F, 2019, PR MACH LEARN RES, V97
[2]  
Allen KR, 2022, Arxiv, DOI arXiv:2212.03574
[3]  
[Anonymous], 2016, IFS Doc.-Cy38r1, P3, DOI DOI 10.21957/83WOUV80
[4]  
Ba J L., LAYER NORMALIZATION
[5]  
Babuschkin I., 2020, The DeepMind JAX Ecosystem
[6]  
Battaglia PW, 2016, ADV NEUR IN, V29
[7]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[8]   The ERA5 global reanalysis: Preliminary extension to 1950 [J].
Bell, Bill ;
Hersbach, Hans ;
Simmons, Adrian ;
Berrisford, Paul ;
Dahlgren, Per ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Radu, Raluca ;
Schepers, Dinand ;
Soci, Cornel ;
Villaume, Sebastien ;
Bidlot, Jean-Raymond ;
Haimberger, Leo ;
Woollen, Jack ;
Buontempo, Carlo ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) :4186-4227
[9]  
Benjamin SG, 2019, Meteorological Monographs, V59, p13.1, DOI [10.1175/amsmonographs-d-18-0020.1, 10.1175/amsmonographs-d-18-0020.1, DOI 10.1175/AMSMONOGRAPHS-D-18-0020.1, 10.1175/AMSMONOGRAPHS-D-18-0020.1]
[10]  
Bi KF, 2022, Arxiv, DOI [arXiv:2211.02556, 10.48550/arXiv.2211.02556, DOI 10.48550/ARXIV.2211.02556]