Hybridization of front tracking and level set for multiphase flow simulations: a machine learning approach

被引:2
作者
Yoon, Ikroh [1 ]
Chergui, Jalel [2 ]
Juric, Damir [2 ,3 ]
Shin, Seungwon [4 ]
机构
[1] Korea Inst Marine Sci & Technol Promot KIMST, Seoul 06775, South Korea
[2] Univ Paris Saclay, Lab Interdisciplinaire Sci Numer LISN, Ctr Natl Rech Sci CNRS, F-91400 Orsay, France
[3] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Hongik Univ, Dept Mech & Syst Design Engn, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
Multiphase flow; Numerical simulation; Front tracking; Level set; Artificial intelligence; Machine learning; VOLUME; CURVATURE;
D O I
10.1007/s12206-023-0829-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A machine learning (ML) based approach is proposed to hybridize two well-established methods for multiphase flow simulations: the front tracking (FT) and the level set (LS) methods. Based on the geometric information of the Lagrangian marker elements which represents the phase interface in FT simulations, the distance function field, which is the key feature for describing the interface in LS simulations, is predicted using an ML model. The trained ML model is implemented in our conventional numerical framework, and we finally demonstrate that the FT-based interface representation can easily and immediately be switched to an LS-based representation whenever needed during the simulation period.
引用
收藏
页码:4749 / 4756
页数:8
相关论文
共 23 条
[1]   NPLIC: A machine learning approach to piecewise linear interface construction [J].
Ataei, Mohammadmehdi ;
Bussmann, Markus ;
Shaayegan, Vahid ;
Costa, Franco ;
Han, Sejin ;
Park, Chul B. .
COMPUTERS & FLUIDS, 2021, 223
[2]   A 2ND-ORDER PROJECTION METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS [J].
BELL, JB ;
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 85 (02) :257-283
[3]  
Brennen C.E., 2005, FUNDAMENTALMULTIPH, V1st, DOI DOI 10.1017/CBO9780511807169
[4]   Machine Learning for Fluid Mechanics [J].
Brunton, Steven L. ;
Noack, Bernd R. ;
Koumoutsakos, Petros .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 :477-508
[5]   Turbulence Modeling in the Age of Data [J].
Duraisamy, Karthik ;
Iaccarino, Gianluca ;
Xiao, Heng .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 51, 2019, 51 :357-377
[6]   A hybrid particle level set method for improved interface capturing [J].
Enright, D ;
Fedkiw, R ;
Ferziger, J ;
Mitchell, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (01) :83-116
[7]   A machine learning strategy for computing interface curvature in Front-Tracking methods [J].
Franca, Hugo L. ;
Oishi, Cassio M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 450
[8]   Sharp interface approaches and deep learning techniques for multiphase flows [J].
Gibou, Frederic ;
Hyde, David ;
Fedkiw, Ron .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 380 :442-463
[9]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225
[10]   A DEEP LEARNING APPROACH FOR THE COMPUTATION OF CURVATURE IN THE LEVEL-SET METHOD [J].
Larios-Cardenas, Luis Angel ;
Gibou, Frederic .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :A1754-A1779