Artificial intelligence in atherosclerotic disease: Applications and trends

被引:13
作者
Kampaktsis, Polydoros N. N. [1 ]
Emfietzoglou, Maria [2 ]
Al Shehhi, Aamna [3 ]
Fasoula, Nikolina-Alexia [4 ,5 ]
Bakogiannis, Constantinos [6 ]
Mouselimis, Dimitrios [6 ]
Tsarouchas, Anastasios [6 ]
Vassilikos, Vassilios P. P. [6 ]
Kallmayer, Michael [7 ]
Eckstein, Hans-Henning [7 ,8 ]
Hadjileontiadis, Leontios [3 ,9 ,10 ]
Karlas, Angelos [4 ,5 ,7 ,8 ]
机构
[1] Columbia Univ, Div Cardiol, Irving Med Ctr, New York, NY 10027 USA
[2] Oxford Univ Hosp, John Radcliffe Hosp, NHS Fdn Trust, Heart Ctr, Oxford, England
[3] Khalifa Univ Sci & Technol, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[4] Helmholtz Zentrum Munchen, Inst Biol & Med Imaging, Neuherberg, Germany
[5] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Sch Med, Chair Biol Imaging, Munich, Germany
[6] Aristotle Univ Thessaloniki, Hippokrat Univ Hosp, Dept Cardiol 3, Thessaloniki, Greece
[7] Tech Univ Munich, Dept Vasc & Endovascular Surg, Klinikum Rechts Isar, Munich, Germany
[8] German Ctr Cardiovasc Res, DZHK, Partner Site Munich Heart Alliance, Munich, Germany
[9] Khalifa Univ Sci & Technol, Healthcare Innovat Ctr, Abu Dhabi, U Arab Emirates
[10] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
关键词
artificial intelligence; machine learning; atherosclerosis; coronary artery disease; peripheral arterial disease; carotid artery disease; CORONARY-ARTERY-DISEASE; FRACTIONAL FLOW RESERVE; CT ANGIOGRAPHY; DIAGNOSTIC PERFORMANCE; CLINICAL NOTES; CARDIAC CT; FOLLOW-UP; RISK; CLASSIFICATION; PLAQUE;
D O I
10.3389/fcvm.2022.949454
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of death globally. Increasing amounts of highly diverse ASCVD data are becoming available and artificial intelligence (AI) techniques now bear the promise of utilizing them to improve diagnosis, advance understanding of disease pathogenesis, enable outcome prediction, assist with clinical decision making and promote precision medicine approaches. Machine learning (ML) algorithms in particular, are already employed in cardiovascular imaging applications to facilitate automated disease detection and experts believe that ML will transform the field in the coming years. Current review first describes the key concepts of AI applications from a clinical standpoint. We then provide a focused overview of current AI applications in four main ASCVD domains: coronary artery disease (CAD), peripheral arterial disease (PAD), abdominal aortic aneurysm (AAA), and carotid artery disease. For each domain, applications are presented with refer to the primary imaging modality used [e.g., computed tomography (CT) or invasive angiography] and the key aim of the applied AI approaches, which include disease detection, phenotyping, outcome prediction, and assistance with clinical decision making. We conclude with the strengths and limitations of AI applications and provide future perspectives.
引用
收藏
页数:16
相关论文
共 145 条
[21]   Experience with Optical Coherence Tomography Enhanced by a Novel Software (Ultreon™ 1.0 Software)-The First One Hundred Cases [J].
Bartus, Stanislaw ;
Silka, Wojciech ;
Kasprzycki, Karol ;
Sabatowski, Karol ;
Malinowski, Krzysztof Piotr ;
Rzeszutko, Lukasz ;
Chyrchel, Michal ;
Bryniarski, Leszek ;
Surdacki, Andrzej ;
Bartus, Krzysztof ;
Januszek, Rafal .
MEDICINA-LITHUANIA, 2022, 58 (09)
[22]   Personalized treatment for coronary artery disease patients: a machine learning approach [J].
Bertsimas, Dimitris ;
Orfanoudaki, Agni ;
Weiner, Rory B. .
HEALTH CARE MANAGEMENT SCIENCE, 2020, 23 (04) :482-506
[23]   Multi-Ethnic Study of Atherosclerosis (MESA) [J].
Blaha, Michael J. ;
DeFilippis, Andrew P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (25) :3195-3216
[24]   Coronary Artery Calcium Scoring Is It Time for a Change in Methodology? [J].
Blaha, Michael J. ;
Mortensen, Martin Bodtker ;
Kianoush, Sina ;
Tota-Maharaj, Rajesh ;
Cainzos-Achirica, Miguel .
JACC-CARDIOVASCULAR IMAGING, 2017, 10 (08) :924-937
[25]   International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries [J].
Bourgeois, Florence T. ;
Gutierrez-Sacristan, Alba ;
Keller, Mark S. ;
Liu, Molei ;
Hong, Chuan ;
Bonzel, Clara-Lea ;
Tan, Amelia L. M. ;
Aronow, Bruce J. ;
Boeker, Martin ;
Booth, John ;
Cruz Rojo, Jaime ;
Devkota, Batsal ;
Garcia Barrio, Noelia ;
Gehlenborg, Nils ;
Geva, Alon ;
Hanauer, David A. ;
Hutch, Meghan R. ;
Issitt, Richard W. ;
Klann, Jeffrey G. ;
Luo, Yuan ;
Mandl, Kenneth D. ;
Mao, Chengsheng ;
Moal, Bertrand ;
Moshal, Karyn L. ;
Murphy, Shawn N. ;
Neuraz, Antoine ;
Ngiam, Kee Yuan ;
Omenn, Gilbert S. ;
Patel, Lav P. ;
Jimenez, Miguel Pedrera ;
Sebire, Neil J. ;
Balazote, Pablo Serrano ;
Serret-Larmande, Arnaud ;
South, Andrew M. ;
Spiridou, Anastasia ;
Taylor, Deanne M. ;
Tippmann, Patric ;
Visweswaran, Shyam ;
Weber, Griffin M. ;
Kohane, Isaac S. ;
Cai, Tianxi ;
Avillach, Paul .
JAMA NETWORK OPEN, 2021, 4 (06)
[26]   The NIH Big Data to Knowledge (BD2K) initiative [J].
Bourne, Philip E. ;
Bonazzi, Vivien ;
Dunn, Michelle ;
Green, Eric D. ;
Guyer, Mark ;
Komatsoulis, George ;
Larkin, Jennie ;
Russell, Beth .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (06) :1114-1114
[27]  
Buzaev Igor Vyacheslavovich, 2016, Chronic Dis Transl Med, V2, P166, DOI 10.1016/j.cdtm.2016.09.007
[28]   Automated coronary artery atherosclerosis detection and weakly supervised localization on coronary CT angiography with a deep 3-dimensional convolutional neural network [J].
Candemir, Sema ;
White, Richard D. ;
Demirer, Mutlu ;
Gupta, Vikash ;
Bigelow, Matthew T. ;
Prevedello, Luciano M. ;
Erdal, Barbaros S. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 83
[29]   Optical coherence tomography-based machine learning for predicting fractional flow reserve in intermediate coronary stenosis: a feasibility study [J].
Cha, Jung-Joon ;
Tran Dinh Son ;
Ha, Jinyong ;
Kim, Jung-Sun ;
Hong, Sung-Jin ;
Ahn, Chul-Min ;
Kim, Byeong-Keuk ;
Ko, Young-Guk ;
Choi, Donghoon ;
Hong, Myeong-Ki ;
Jang, Yangsoo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[30]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131