Artificial intelligence in atherosclerotic disease: Applications and trends

被引:13
作者
Kampaktsis, Polydoros N. N. [1 ]
Emfietzoglou, Maria [2 ]
Al Shehhi, Aamna [3 ]
Fasoula, Nikolina-Alexia [4 ,5 ]
Bakogiannis, Constantinos [6 ]
Mouselimis, Dimitrios [6 ]
Tsarouchas, Anastasios [6 ]
Vassilikos, Vassilios P. P. [6 ]
Kallmayer, Michael [7 ]
Eckstein, Hans-Henning [7 ,8 ]
Hadjileontiadis, Leontios [3 ,9 ,10 ]
Karlas, Angelos [4 ,5 ,7 ,8 ]
机构
[1] Columbia Univ, Div Cardiol, Irving Med Ctr, New York, NY 10027 USA
[2] Oxford Univ Hosp, John Radcliffe Hosp, NHS Fdn Trust, Heart Ctr, Oxford, England
[3] Khalifa Univ Sci & Technol, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[4] Helmholtz Zentrum Munchen, Inst Biol & Med Imaging, Neuherberg, Germany
[5] Tech Univ Munich, Cent Inst Translat Canc Res TranslaTUM, Sch Med, Chair Biol Imaging, Munich, Germany
[6] Aristotle Univ Thessaloniki, Hippokrat Univ Hosp, Dept Cardiol 3, Thessaloniki, Greece
[7] Tech Univ Munich, Dept Vasc & Endovascular Surg, Klinikum Rechts Isar, Munich, Germany
[8] German Ctr Cardiovasc Res, DZHK, Partner Site Munich Heart Alliance, Munich, Germany
[9] Khalifa Univ Sci & Technol, Healthcare Innovat Ctr, Abu Dhabi, U Arab Emirates
[10] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki, Greece
关键词
artificial intelligence; machine learning; atherosclerosis; coronary artery disease; peripheral arterial disease; carotid artery disease; CORONARY-ARTERY-DISEASE; FRACTIONAL FLOW RESERVE; CT ANGIOGRAPHY; DIAGNOSTIC PERFORMANCE; CLINICAL NOTES; CARDIAC CT; FOLLOW-UP; RISK; CLASSIFICATION; PLAQUE;
D O I
10.3389/fcvm.2022.949454
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of death globally. Increasing amounts of highly diverse ASCVD data are becoming available and artificial intelligence (AI) techniques now bear the promise of utilizing them to improve diagnosis, advance understanding of disease pathogenesis, enable outcome prediction, assist with clinical decision making and promote precision medicine approaches. Machine learning (ML) algorithms in particular, are already employed in cardiovascular imaging applications to facilitate automated disease detection and experts believe that ML will transform the field in the coming years. Current review first describes the key concepts of AI applications from a clinical standpoint. We then provide a focused overview of current AI applications in four main ASCVD domains: coronary artery disease (CAD), peripheral arterial disease (PAD), abdominal aortic aneurysm (AAA), and carotid artery disease. For each domain, applications are presented with refer to the primary imaging modality used [e.g., computed tomography (CT) or invasive angiography] and the key aim of the applied AI approaches, which include disease detection, phenotyping, outcome prediction, and assistance with clinical decision making. We conclude with the strengths and limitations of AI applications and provide future perspectives.
引用
收藏
页数:16
相关论文
共 145 条
[1]   Pre-surgical and Post-surgical Aortic Aneurysm Maximum Diameter Measurement: Full Automation by Artificial Intelligence [J].
Adam, Chloe ;
Fabre, Dominique ;
Mougin, Justine ;
Zins, Marc ;
Azarine, Arshid ;
Ardon, Roberto ;
D'Assignies, Gaspard ;
Haulon, Stephan .
EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2021, 62 (06) :869-877
[2]   Natural language processing of clinical notes for identification of critical limb ischemia [J].
Afzal, Naveed ;
Mallipeddi, Vishnu Priya ;
Sohn, Sunghwan ;
Liu, Hongfang ;
Chaudhry, Rajeev ;
Scott, Christopher G. ;
Kullo, Iftikhar J. ;
Arruda-Olson, Adelaide M. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 111 :83-89
[3]   Mining peripheral arterial disease cases from narrative clinical notes using natural language processing [J].
Afzal, Naveed ;
Sohn, Sunghwan ;
Abram, Sara ;
Scott, Christopher G. ;
Chaudhry, Rajeev ;
Liu, Hongfang ;
Kullo, Iftikhar J. ;
Arruda-Olson, Adelaide M. .
JOURNAL OF VASCULAR SURGERY, 2017, 65 (06) :1753-1761
[4]   QUANTIFICATION OF CORONARY-ARTERY CALCIUM USING ULTRAFAST COMPUTED-TOMOGRAPHY [J].
AGATSTON, AS ;
JANOWITZ, WR ;
HILDNER, FJ ;
ZUSMER, NR ;
VIAMONTE, M ;
DETRANO, R .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1990, 15 (04) :827-832
[5]   A database for using machine learning and data mining techniques for coronary artery disease diagnosis [J].
Alizadehsani, R. ;
Roshanzamir, M. ;
Abdar, M. ;
Beykikhoshk, A. ;
Khosravi, A. ;
Panahiazar, M. ;
Koohestani, A. ;
Khozeimeh, F. ;
Nahavandi, S. ;
Sarrafzadegan, N. .
SCIENTIFIC DATA, 2019, 6 (1)
[6]  
Alizadehsani Roohallah, 2012, International Journal of Knowledge Discovery in Bioinformatics, V3, P59, DOI 10.4018/jkdb.2012010104
[7]  
Alizadehsani R., 2012, J. Med. Bioeng., V1, P26, DOI 10.12720/jomb.1.1.26-29
[8]  
Alizadehsani R., 2012, EUR J SCI RES, V82, P542
[9]   Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary arteries [J].
Alizadehsani, Roohallah ;
Roshanzamir, Mohamad ;
Abdar, Moloud ;
Beykikhoshk, Adham ;
Khosravi, Abbas ;
Nahavandi, Saeid ;
Plawiak, Pawel ;
Tan, Ru San ;
Acharya, U. Rajendra .
EXPERT SYSTEMS, 2022, 39 (07)
[10]  
Alizadehsani Roohallah, 2012, J Med Signals Sens, V2, P153