Towards ultralow platinum loading proton exchange membrane fuel cells

被引:104
作者
Fan, Linhao [1 ]
Deng, Hao [2 ]
Zhang, Yingguang [3 ]
Du, Qing [1 ]
Leung, Dennis Y. C. [3 ]
Wang, Yun [4 ]
Jiao, Kui [1 ,5 ]
机构
[1] Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China
[2] Shanghai Hydrogen Prop Technol Co Ltd, 1788 Xiechun Rd, Shanghai 201804, Peoples R China
[3] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Peoples R China
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab, Irvine, CA 92697 USA
[5] Tianjin Univ, Natl Ind Educ Platform Energy Storage, 135 Yaguan Rd, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
OXYGEN REDUCTION REACTION; CATHODE ELECTRODE; CATALYST LAYERS; REACTION-RATES; IONIC LIQUIDS; PERFORMANCE; IONOMER; NANOPARTICLES; DEGRADATION; FABRICATION;
D O I
10.1039/d2ee03169h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the upcoming worldwide commercialization of proton exchange membrane fuel cells (PEMFCs), the challenges regarding their cost, performance and durability urgently need to be overcome. Developing ultralow platinum (Pt) loading PEMFCs is a critical technical route to improve their cost competitiveness. This perspective provides in-depth discussion and insights on the motivation for an ultralow Pt loading of less than 0.05 grams per kilowatt, along with important technical development routes. The latest advancements for designing catalyst layers are presented regarding the critical mass transfer and degradation issues under low Pt loading. Moreover, approaches for accelerating catalyst layer development, including material development, structure design, and preparation technology, are proposed to meet the ultralow Pt loading target, which are expected to be implemented in next-generation catalyst layers for PEMFCs.
引用
收藏
页码:1466 / 1479
页数:15
相关论文
共 107 条
[1]   Interface learning of multiphysics and multiscale systems [J].
Ahmed, Shady E. ;
San, Omer ;
Kara, Kursat ;
Younis, Rami ;
Rasheed, Adil .
PHYSICAL REVIEW E, 2020, 102 (05)
[2]  
[Anonymous], MINE PRODUCTION PLAT
[3]  
[Anonymous], SHANGHAI HYDROGEN PR
[4]  
[Anonymous], 2020, Full Specs of Toyota MIRAI 2021
[5]   Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability [J].
Avid, Arezoo ;
Ochoa, Jesus Lopez ;
Huang, Ying ;
Liu, Yuanchao ;
Atanassov, Plamen ;
Zenyuk, Iryna, V .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[7]   Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability [J].
Beermann, Vera ;
Gocyla, Martin ;
Willinger, Elena ;
Rudi, Stefan ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Willinger, Marc-Georg ;
Strasser, Peter .
NANO LETTERS, 2016, 16 (03) :1719-1725
[8]  
Borup R., 2019, 2019 DOE FUEL CELL T
[9]   PemNet: A Transfer Learning-Based Modeling Approach of High-Temperature Polymer Electrolyte Membrane Electrochemical Systems [J].
Briceno-Mena, Luis A. ;
Romagnoli, Jose A. ;
Arges, Christopher G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (09) :3350-3357
[10]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414