On general decay for a nonlinear viscoelastic equation

被引:4
作者
Kelleche, Abdelkarim [1 ]
Feng, Baowei [2 ]
机构
[1] Univ Djilali Bounaama, Fac Sci & Technol, Soufay, Khemis Miliana, Algeria
[2] Southwestern Univ Finance & Econ, Dept Econ Math, Chengdu, Peoples R China
关键词
Energy decay; multiplier technique; wave equation; convexity; EXPONENTIAL STABILITY; LINEAR VISCOELASTICITY; ASYMPTOTIC STABILITY; EXISTENCE; BEHAVIOR; ENERGY;
D O I
10.1080/00036811.2021.1992394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a nonlinear viscoelastic equation. The aim is to expand the class of the function of relaxation h(t) that ensuring a general decay. We adopt the following commonly condition on relaxation function h '(t) <= -xi(t)chi(h(t)), where xi is a nonincreasing function and chi is an increasing and convex function on the whole [0, infinity) instead of is convex only near the origin in the literature.
引用
收藏
页码:1582 / 1600
页数:19
相关论文
共 28 条
[1]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[2]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[3]  
[Anonymous], 1992, SIAM Studies in Applied Mathematics
[4]  
Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
[5]   Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Lasiecka, Irena ;
Webler, Claudete M. .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) :121-145
[6]   Existence and sharp decay rate estimates for a von Karman system with long memory [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Andre D. D. ;
Lasiecka, Irena ;
Wang, Xiaojun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :289-306
[7]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[8]  
Cavalcanti MM., 2001, DISCRETE CONTIN DYN, V19, P2012
[9]   General decay properties of abstract linear viscoelasticity [J].
Conti, Monica ;
Pata, Vittorino .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 71 (01)
[10]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297