A class of location invariant estimators for heavy tailed distributions

被引:0
作者
Zhang, Lvyun [1 ]
Chen, Shouquan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Asymptotic normality; location invariant heavy tailed index estimator; second order regular variation; MOMENT ESTIMATOR; INDEX; HILL; INFERENCE; SUMS;
D O I
10.1080/03610926.2021.1931335
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new class of location-invariant semi-parametric estimators of a positive extreme value index gamma>0 is proposed. Its asymptotic distributional representation and asymptotic normality are derived, and the optimal choice of the sample fraction by mean squared error is also discussed for some special cases. Finally comparison studies are provided for some familiar models by Monte Carlo simulations.
引用
收藏
页码:896 / 917
页数:22
相关论文
共 50 条
  • [21] Estimation of High Conditional Quantiles for Heavy-Tailed Distributions
    Wang, Huixia Judy
    Li, Deyuan
    He, Xuming
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1453 - 1464
  • [22] On the problem of inference for inequality measures for heavy-tailed distributions
    Schluter, Christian
    ECONOMETRICS JOURNAL, 2012, 15 (01) : 125 - 153
  • [23] ON THE ESTIMATION OF THE SECOND ORDER PARAMETER FOR HEAVY-TAILED DISTRIBUTIONS
    Deme, El Hadji
    Gardes, Laurent
    Girard, Stephane
    REVSTAT-STATISTICAL JOURNAL, 2013, 11 (03) : 277 - 299
  • [24] ESTIMATING THE GINI INDEX FOR HEAVY-TAILED INCOME DISTRIBUTIONS
    Bari, Amina
    Rassoul, Abdelaziz
    Rouis, Hamid Ould
    SOUTH AFRICAN STATISTICAL JOURNAL, 2021, 55 (01) : 15 - 28
  • [25] Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions
    Zhu, Hanbing
    Li, Yehua
    Liu, Baisen
    Yao, Weixin
    Zhang, Riquan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 267 - 286
  • [26] Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions
    Goegebeur, Yuri
    Guillou, Armelle
    Verster, Andrehette
    STATISTICS & PROBABILITY LETTERS, 2014, 87 : 108 - 114
  • [27] Partially linear models based on heavy-tailed and asymmetrical distributions
    Bazrafkan, Masoumeh
    Zare, Karim
    Maleki, Mohsen
    Khodadi, Zaha
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (05) : 1243 - 1253
  • [28] Joint inference on extreme expectiles for multivariate heavy-tailed distributions
    Padoan, Simone A.
    Stupfler, Gilles
    BERNOULLI, 2022, 28 (02) : 1021 - 1048
  • [29] Location invariant Weiss-Hill estimator
    Ling, Chengxiu
    Peng, Zuoxiang
    Nadarajah, Saralees
    EXTREMES, 2012, 15 (02) : 197 - 230
  • [30] Asymptotic normality of the likelihood moment estimators for a stationary linear process with heavy-tailed innovations
    Lukas Martig
    Jürg Hüsler
    Extremes, 2018, 21 : 1 - 26