A class of location invariant estimators for heavy tailed distributions

被引:0
作者
Zhang, Lvyun [1 ]
Chen, Shouquan [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Asymptotic normality; location invariant heavy tailed index estimator; second order regular variation; MOMENT ESTIMATOR; INDEX; HILL; INFERENCE; SUMS;
D O I
10.1080/03610926.2021.1931335
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new class of location-invariant semi-parametric estimators of a positive extreme value index gamma>0 is proposed. Its asymptotic distributional representation and asymptotic normality are derived, and the optimal choice of the sample fraction by mean squared error is also discussed for some special cases. Finally comparison studies are provided for some familiar models by Monte Carlo simulations.
引用
收藏
页码:896 / 917
页数:22
相关论文
共 50 条
  • [1] A class of unbiased location invariant Hill-type estimators for heavy tailed distributions
    Li, Jiaona
    Peng, Zuoxiang
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 829 - 847
  • [2] Kernel-type estimators for the distortion risk premiums of heavy-tailed distributions
    Benkhelifa, Lazhar
    SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (03) : 262 - 278
  • [3] Beta kernel quantile estimators of heavy-tailed loss distributions
    Charpentier, Arthur
    Oulidi, Abder
    STATISTICS AND COMPUTING, 2010, 20 (01) : 35 - 55
  • [4] Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions
    El Methni, Jonathan
    Stupfler, Gilles
    ECONOMETRICS AND STATISTICS, 2018, 6 : 129 - 148
  • [5] Asymptotic normality of the likelihood moment estimators for a stationary linear process with heavy-tailed innovations
    Martig, Lukas
    Husler, Jurg
    EXTREMES, 2018, 21 (01) : 1 - 26
  • [6] Estimation of extreme quantiles from heavy and light tailed distributions
    El Methni, Jonathan
    Gardes, Laurent
    Girard, Stephane
    Guillou, Armelle
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (10) : 2735 - 2747
  • [7] A PARAMETRIC BOOTSTRAP FOR HEAVY-TAILED DISTRIBUTIONS
    Cornea-Madeira, Adriana
    Davidson, Russell
    ECONOMETRIC THEORY, 2015, 31 (03) : 449 - 470
  • [8] On moment-type estimators for a class of log-symmetric distributions
    N. Balakrishnan
    Helton Saulo
    Marcelo Bourguignon
    Xiaojun Zhu
    Computational Statistics, 2017, 32 : 1339 - 1355
  • [9] On moment-type estimators for a class of log-symmetric distributions
    Balakrishnan, N.
    Saulo, Helton
    Bourguignon, Marcelo
    Zhu, Xiaojun
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1339 - 1355
  • [10] Asymptotic normality of location invariant heavy tail index estimator
    Jiaona Li
    Zuoxiang Peng
    Saralees Nadarajah
    Extremes, 2010, 13 : 269 - 290