Highly Hydrophilic Zirconia Composite Anion Exchange Membrane for Water Electrolysis and Fuel Cells

被引:5
|
作者
Ma, Wenli [1 ]
Tian, Lin [1 ]
Zhu, Qingqing [1 ]
Zhang, Shuhuan [1 ]
Wang, Fanghui [1 ]
Zhu, Hong [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, Dept Organ Chem, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
organic-inorganic composite membrane; hydrophiliczirconia; microgap; H-2/O-2; fuelcell; water electrolysis; POLYMER; PERFORMANCE; STABILITY;
D O I
10.1021/acsami.3c16283
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To prepare anion exchange membranes with high water electrolysis and single fuel cell performance, an inorganic-organic composite (IOC) strategy with click cross-linked membranes coated with different contents of hydrophilic polar nanozirconia is proposed to fabricate composite membranes (CM) PBP-SH-Zrx. The performance test results showed that the CM PBP-SH-Zr4 not only has good through-plane ionic conductivity (167.7 mS cm(-1), 80 C-degrees), but also exhibits satisfactory dimensional stability (SR 16.5%, WU 206.4%, 80 C-degrees), especially demonstrating excellent alkaline stability with only 16% degradation (2 M NaOH for 2200 h). In water electrolysis, the "microgap" between the membrane and catalyst layer (solid-solid interface) is alleviated, and the membrane electrode assembly (MEA) interfacial compatibility (liquid-solid-solid interface) is enhanced. The CM PBP-SH-Zr4 showed the lowest charge transfer resistance (R-ct, 0.037 Omega cm(2)) and a high current density of 2.5 A cm(-2) at 2.2 V, while the voltage drop was 0.361 mV h-1 after 360 h of endurance (six start-stop cycles) at 60 C-degrees and 500 mA cm(-2), proving a good water electrolysis durability. Moreover, an acceptable peak power density of 0.464 W cm(-2) at 80 C-degrees is achieved in a H-2/O-2 fuel cell with a PBP-SH-Zr4-AEM. Therefore, the IOC strategy can enhance the membrane's comprehensive performance and interface compatibility of MEA and may promote the development of anion exchange membranes (AEMs) for water electrolysis and fuel cells.
引用
收藏
页码:11849 / 11859
页数:11
相关论文
共 50 条
  • [1] Highly Water Resistant Anion Exchange Membrane for Fuel Cells
    Yang, Zhengjin
    Hou, Jianqiu
    Wang, Xinyu
    Wu, Liang
    Xu, Tongwen
    MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (14) : 1362 - 1367
  • [2] Quantifying water transport in anion exchange membrane fuel cells
    Eriksson, Bjorn
    Grimler, Henrik
    Carlson, Annika
    Ekstrom, Henrik
    Lindstrom, Rakel Wreland
    Lindbergh, Goran
    Lagergren, Carina
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) : 4930 - 4939
  • [3] Research progress of anion exchange membrane water electrolysis cells
    Feng J.
    Song F.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (07): : 3501 - 3509
  • [4] A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells
    Cho, Min Kyung
    Lim, Ahyoun
    Lee, So Young
    Kim, Hyoung-Juhn
    Yoo, Sung Jong
    Sung, Yung-Eun
    Park, Hyun S.
    Jang, Jong Hyun
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2017, 8 (03) : 183 - 196
  • [5] Electrochemical- and mechanical stability of catalyst layers in anion exchange membrane water electrolysis
    Mayerhoefer, Britta
    Speck, Florian D.
    Hegelheimer, Manuel
    Bierling, Markus
    Abbas, Dunia
    McLaughlin, David
    Cherevko, Serhiy
    Thiele, Simon
    Peach, Retha
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) : 4304 - 4314
  • [6] Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production
    Lee, Sol A.
    Kim, Jaehyun
    Kwon, Ki Chang
    Park, Sun Hwa
    Jang, Ho Won
    CARBON NEUTRALIZATION, 2022, 1 (01): : 26 - 48
  • [7] Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
    Omasta, T. J.
    Wang, L.
    Peng, X.
    Lewis, C. A.
    Varcoe, J. R.
    Mustain, W. E.
    JOURNAL OF POWER SOURCES, 2018, 375 : 205 - 213
  • [8] Ni/Fe based electrocatalyst for highly-efficient anion exchange membrane water electrolysis
    Wang, Xiaocan
    Jiang, Zhangtang
    Ma, Yichang
    Su, Xiangyu
    Zhao, Xikang
    Zhu, Aimei
    Zhang, Qiugen
    JOURNAL OF POWER SOURCES, 2024, 591
  • [9] Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis
    Kim, Jiyoung
    Lee, Kiyoung
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2022, 25 (02): : 69 - 80
  • [10] Anion Exchange Membrane Water Electrolysis: The Future of Green Hydrogen
    Li, Qihao
    Villarino, Andres Molina
    Peltier, Cheyenne R.
    Macbeth, Alexandra J.
    Yang, Yao
    Kim, Mi-Ju
    Shi, Zixiao
    Krumov, Mihail R.
    Lei, Chong
    Rodriguez-Calero, Gabriel G.
    Soto, Joesene
    Yu, Seung-Ho
    Mutolo, Paul F.
    Xiao, Li
    Zhuang, Lin
    Muller, David A. .
    Coates, Geoffrey W.
    Zelenay, Piotr
    Abruna, Hector D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (17) : 7901 - 7912