Challenges and opportunities of atomic-scales reactive sites in thriving electrochemical CO2 reduction reaction

被引:25
作者
Sun, Pengliang [1 ]
Liu, Sailin [2 ]
Zheng, Xiong [1 ,4 ]
Hu, Guangzhi [3 ]
Zhang, Qingran [1 ,4 ]
Liu, Xinchao [1 ]
Zheng, Guanghong [1 ]
Chen, Yinguang [1 ,4 ]
机构
[1] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[2] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[3] Yunnan Univ, Inst Ecol Res & Pollut Control Plateau Lakes, Sch Ecol & Environm Sci, Kunming 650504, Yunnan, Peoples R China
[4] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
关键词
Electrocatalytic CO(2 )reduction; Electrolyzers; Design principles; Selectivity regulation; Structure-activity; Coordination configurations; METAL-FREE CATALYSTS; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; PRODUCT SELECTIVITY; POROUS CARBON; LIQUID FUEL; ELECTROREDUCTION; COPPER; DESIGN; NANOSHEETS;
D O I
10.1016/j.nantod.2024.102152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction reaction (ECO2RR) converts CO2 into value-added chemicals or fuels to realize carbon recycling as means to solve the problems of renewable energy shortage and environmental pollution. The development of cost-effective CO2RR catalysts with high activity, stability and selectivity is the key that enables efficient conversion from CO2 to valuable products. It is also important to understand intrinsic mechanisms of the underlying active-site that affect the performances of catalysts, which can, in turn, facilitate the rational design of more active electrocatalysts. In this context, it is particularly important to understand the structure-activity relationship of catalyst active sites during the CO2RR process from different atomic-scales, which inspires to organize this review. Specifically, we focus on the atomic-level construction of active sites from single atoms, dual-site metal, clusters, or/and graphitic carbon materials: key approaches for tailoring coordination configurations to enhance target product selectivity, i.e., optimizing the interplay between the catalytic active center and reactants or intermediates, disrupting the linear correlation of intermediate adsorption energies, and promoting intricate cascading reactions involving multiple intermediates. Highlight the intricate correlation between the structure-activity of CO2RR catalysts, which govern the discerning refinement of catalysts and propel advances in their practical application. Then, the electrocatalytic reactors for ECO2R reactions are critically reviewed. The acquisition of key metrics, the challenges faced, and the most suitable solutions for electrocatalytic CO2RR are proposed. Finally, future research directions and strategies are anticipated to inspire revolutionary advancements.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Positive Valent Metal Sites in Electrochemical CO2 Reduction Reaction
    Li, Wen Jing
    Lou, Zhen Xin
    Zhao, Jia Yue
    Liu, Peng Fei
    Yuan, Hai Yang
    Yang, Hua Gui
    CHEMPHYSCHEM, 2023, 24 (08)
  • [2] Challenges and Opportunities of Choosing a Membrane for Electrochemical CO2 Reduction
    Rehberger, Helene
    Rezaei, Mohammad
    Aljabour, Abdalaziz
    MEMBRANES, 2025, 15 (02)
  • [3] InBi Bimetallic Sites for Efficient Electrochemical Reduction of CO2 to HCOOH
    Wang, Qinru
    Yang, Xiaofeng
    Zang, Hu
    Liu, Changjiang
    Wang, Jiahao
    Yu, Nan
    Kuai, Long
    Qin, Qing
    Geng, Baoyou
    SMALL, 2023, 19 (41)
  • [4] New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction
    Lee, Chan Woo
    Cho, Nam Heon
    Im, Sang Won
    Jee, Michael Shincheon
    Hwang, Yun Jeong
    Min, Byoung Koun
    Nam, Ki Tae
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14043 - 14057
  • [5] Reaction environment Optimization with Janus electrode in CO2 electrochemical reduction to CO
    Chao, Linjie
    Lin, Jing
    Hu, Qing
    Yan, Shenglin
    Mahyoub, Samah A.
    Wei, Zhihang
    Wu, Yurong
    Cheng, Zhenmin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362
  • [6] Catalysts and electrolyzers for the electrochemical CO2 reduction reaction: from laboratory to industrial applications
    Du, Shiqian
    Yang, Pupu
    Li, Mengyu
    Tao, Li
    Wang, Shuangyin
    Liu, Zhao-Qing
    CHEMICAL COMMUNICATIONS, 2024, 60 (10) : 1207 - 1221
  • [7] Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction
    Gao, Wenqiang
    Xu, Yifei
    Fu, Linke
    Chang, Xiaoxia
    Xu, Bingjun
    NATURE CATALYSIS, 2023, 6 (10) : 885 - 894
  • [8] Tandem strategy for electrochemical CO2 reduction reaction
    Zhang, Bing
    Wang, Linlin
    Li, Di
    Li, Zongmiao
    Bu, Ran
    Lu, Yingying
    CHEM CATALYSIS, 2022, 2 (12): : 3395 - 3429
  • [9] Switching the Reaction Course of Electrochemical CO2 Reduction with Ionic Liquids
    Sun, Liyuan
    Ramesha, Ganganahalli K.
    Kamat, Prashant V.
    Brennecke, Joan F.
    LANGMUIR, 2014, 30 (21) : 6302 - 6308
  • [10] Two-dimensional Metal-organic Frameworks for Electrochemical CO2 Reduction Reaction
    Zhan, Tingting
    Zou, Yingbing
    Yang, Ying
    Ma, Xiuling
    Zhang, Zhangjing
    Xiang, Shengchang
    CHEMCATCHEM, 2022, 14 (03)