Lump Waves in a Spatial Symmetric Nonlinear Dispersive Wave Model in (2+1)-Dimensions

被引:30
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
关键词
lump wave; Hirota bilinear form; soliton; symbolic computation; nonlinearity; dispersion; EQUATION; SOLITONS; HIERARCHIES; KINK;
D O I
10.3390/math11224664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to search for lump waves in a spatial symmetric (2+1)-dimensional dispersive wave model. Through an ansatz on positive quadratic functions, we conduct symbolic computations with Maple to generate lump waves for the proposed nonlinear model. A line of critical points of the lump waves is computed, whose two spatial coordinates travel at constant speeds. The corresponding maximum and minimum values are evaluated in terms of the wave numbers, and interestingly, all those extreme values do not change with time, either. The last section is the conclusion.
引用
收藏
页数:9
相关论文
共 66 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]  
Ablowitz M. J., 1997, Complex variables, introduction and applications
[3]   DECAY OF CONTINUOUS SPECTRUM FOR SOLUTIONS OF KORTEWEG-DEVRIES EQUATION [J].
ABLOWITZ, MJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1277-1284
[4]   Multiple lump solutions and their interactions for an integrable nonlinear dispersionless PDE in vector fields [J].
Batool, Tahira ;
Seadawy, Aly R. ;
Rizvi, Syed T. R. .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (02) :264-287
[5]   Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model [J].
Chen, Si-Jia ;
Lu, Xing ;
Yin, Yu-Hang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (05)
[6]   N-solitons, lump solution and interaction phenomenon to the Boussinesq equation [J].
Chen, Wenxia ;
Guan, Ru ;
Dong, Minjie ;
Tian, Lixin ;
Ma, Jingjie .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (11) :2237-2249
[7]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[8]   LUMP SOLUTIONS OF THE BKP EQUATION [J].
GILSON, CR ;
NIMMO, JJC .
PHYSICS LETTERS A, 1990, 147 (8-9) :472-476
[9]   Multiple-soliton and lump-kink solutions for a generalized (3 [J].
Guan, Xue ;
Liu, Wenjun .
RESULTS IN PHYSICS, 2020, 17
[10]   Lump solutions and interaction solutions for (2+1)-dimensional KPI equation [J].
Guo, Yanfeng ;
Dai, Zhengde ;
Guo, Chunxiao .
FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (05) :875-886