Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a

被引:2
|
作者
Ishibashi, Riki [1 ,2 ]
Maki, Ritsuko [1 ]
Toyoshima, Fumiko [1 ,2 ,3 ]
机构
[1] Kyoto Univ, Inst Life & Med Sci, Dept Biosyst Sci, Sakyo Ku, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Dept Mammalian Regulatory Networks, Sakyo Ku, Kyoto 6068502, Japan
[3] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Homeostat Med, Bunkyo Ku, Yushima, Tokyo 1138510, Japan
基金
日本学术振兴会;
关键词
HYDRODYNAMIC INJECTION; RNA INTERFERENCE; HIGH-LEVEL; NAKED DNA; EXPRESSION; GENOME; DELIVERY; HEPATOCYTES; LIVER; CPF1;
D O I
10.1038/s41598-024-57551-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas system for in vivo genome editing is a powerful tool for gene therapy against several diseases. We have previously developed the pCriMGET_9-12a system, an in vivo cleavable donor plasmid for precise targeted knock-in of exogenous DNA by both Cas9 and Cas12a. Here, we show that the pCriMGET_9-12a system can be applied for in vivo in-frame knock-in of exogenous DNA in adult mouse liver by hydrodynamic delivery of the targeting plasmids. The in vivo cleavable pCriMGET_9-12a donor plasmids significantly increased the knock-in efficiency of both CRISPR-Cas9 and CRISPR-Cas12a in the adult mouse liver compared to uncleavable donor plasmids. This strategy also achieved in-frame reporter gene knock-in without indel mutations. Therefore, in vivo gene targeting using the pCriMGET_9-12a system may contribute to the establishment of safer, more precise, versatile and efficient gene therapy methods in adult organs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Comparison of CRISPR-MAD7 and CRISPR-Cas9 for Gene Disruptions in Komagataella phaffii
    Smirnov, Kirill
    Weiss, Florian
    Hatzl, Anna-Maria
    Rieder, Lukas
    Olesen, Kjeld
    Jensen, Sanne
    Glieder, Anton
    JOURNAL OF FUNGI, 2024, 10 (03)
  • [42] Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era
    Yagoubat, Akila
    Corrales, Rosa M.
    Bastien, Patrick
    Leveque, Maude F.
    Sterkers, Yvon
    TRENDS IN PARASITOLOGY, 2020, 36 (09) : 745 - 760
  • [43] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Frangoul, H.
    Altshuler, D.
    Cappellini, M. D.
    Chen, Y-S
    Domm, J.
    Eustace, B. K.
    Foell, J.
    de la Fuente, J.
    Grupp, S.
    Handgretinger, R.
    Ho, T. W.
    Kattamis, A.
    Kernytsky, A.
    Lekstrom-Himes, J.
    Li, A. M.
    Locatelli, F.
    Mapara, M. Y.
    de Montalembert, M.
    Rondelli, D.
    Sharma, A.
    Sheth, S.
    Soni, S.
    Steinberg, M. H.
    Wall, D.
    Yen, A.
    Corbacioglu, S.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03) : 252 - 260
  • [44] CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential
    Blenke, Erik Oude
    Evers, Martijn J. W.
    Mastrobattista, Enrico
    van der Oost, John
    JOURNAL OF CONTROLLED RELEASE, 2016, 244 : 139 - 148
  • [45] Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing
    Stewart, J.
    Banerjee, S.
    Pettitt, S. J.
    Lord, C. J.
    CLINICAL ONCOLOGY, 2020, 32 (02) : 69 - 74
  • [46] Tissue-specific gene targeting using CRISPR/Cas9
    Ablain, J.
    Zon, L. I.
    ZEBRAFISH: GENETICS, GENOMICS, AND TRANSCRIPTOMICS, 4TH EDITION, 2016, 135 : 189 - 202
  • [47] A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis
    Sachla, Ankita J.
    Alfonso, Alexander J.
    Helmann, John D.
    MICROBIOLOGY SPECTRUM, 2021, 9 (02):
  • [48] Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes
    Burger, Alexa
    Lindsay, Helen
    Felker, Anastasia
    Hess, Christopher
    Anders, Carolin
    Chiavacci, Elena
    Zaugg, Jonas
    Weber, Lukas M.
    Catena, Raul
    Jinek, Martin
    Robinson, Mark D.
    Mosimann, Christian
    DEVELOPMENT, 2016, 143 (11): : 2025 - 2037
  • [49] CRISPR-Cas9 technology: applications and human disease modelling
    Torres-Ruiz, Raul
    Rodriguez-Perales, Sandra
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (01) : 4 - 12
  • [50] Generation of gene-of-interest knockouts in murine organoids using CRISPR-Cas9
    Huber, Anne
    Dijkstra, Christine
    Ernst, Matthias
    Eissmann, Moritz F.
    STAR PROTOCOLS, 2023, 4 (01):