Evapotranspiration estimation using a satellite-based surface energy balance: a case study of Upper Bari Doab, Pakistan

被引:2
|
作者
Zahid, Muhammad Naufil [1 ,2 ]
Ahmad, Shakil [1 ]
Khan, Junaid Aziz [1 ]
Arshad, Muhammad Dilshad [3 ]
Azmat, Muhammad [1 ]
Ukasha, Muhammad [4 ,5 ]
机构
[1] NUST, SCEE, Sect H 12, Islamabad 44000, Pakistan
[2] IWMI, 12 Km Multan Rd, Lahore 53700, Pakistan
[3] PCRWR, Sect H-8-1, Islamabad 44000, Pakistan
[4] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div, Thuwal, Saudi Arabia
[5] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
关键词
SEBAL; Evapotranspiration; Landsat; 8; Upper Bari Doab; Energy Balance; MAPPING EVAPOTRANSPIRATION; WATER PRODUCTIVITY; LYSIMETER; MODEL; AGRICULTURE; PERFORMANCE; ALGORITHM; FLUXES; SYSTEM;
D O I
10.1007/s12665-023-11284-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Surface Energy Balance Algorithm for Land (SEBAL) is a remote sensing-based spatial evapotranspiration (ET) model known for its minimum reliance on ground-based weather data. The SEBAL model has been validated in many countries using information from different satellite sensors and validation techniques. In this study, the Visible, Near Infrared (NIR), Shortwave Infrared (SWIR), and Thermal Infrared (TIR) bands from Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been used to validate SEBAL model using ET from non-weighing (drainage) lysimeter. The study was carried out on semiarid Upper Bari Doab region located in central Punjab, Pakistan. The SEBAL model is sensitive to the presence of cloud cover which necessitates the use of cloud free satellite images. Hence, eight Landsat 8 OLI/TIRS images from July 2019 to April 2021 were processed and the results for daily actual ET (ETa) were compared with the observed ET from Lysimeter. The comparison of the daily estimated SEBAL ET and lysimeter ET showed a Root Mean Square Error (RMSE = 1.26 mmd-1), Coefficient of Determination (R2 = 0.9), Mean Absolute Error (MAE = 0.52 mmd-1), and Nash-Sutcliffe Efficiency (NSE = 0.92). The findings of this study suggest that the SEBAL model can be reliably used to determine consumptive water use, schedule irrigation in canal command areas, and ensure equitable water distribution in arid/semiarid regions of Pakistan where agricultural productivity heavily relies on irrigation water supply.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain
    Santos, C.
    Lorite, I. J.
    Allen, R. G.
    Tasumi, M.
    WATER RESOURCES MANAGEMENT, 2012, 26 (11) : 3267 - 3283
  • [22] A comparative study of crop evapotranspiration estimation in maize using empirical methods, pan evaporation and satellite-based remote sensing technique
    Raguramakrishnan, M.
    Pazhanivelan, S.
    Raju, M.
    Kumaraperumal, R.
    Ravikumar, V
    Senthil, A.
    PLANT SCIENCE TODAY, 2024, 11 (04): : 515 - 526
  • [23] Reduced evapotranspiration from leaf beetle induced tamarisk defoliation in the Lower Virgin River using satellite-based energy balance
    Liebert, Ryan
    Huntington, Justin
    Morton, Charles
    Sueki, Sachiko
    Acharya, Kumud
    ECOHYDROLOGY, 2016, 9 (01) : 179 - 193
  • [24] Estimation of actual evapotranspiration using surface energy balance algorithm for land in the lower Bhavani basin
    Pavithran, P.
    Pazhanivelan, S.
    Sivamurugan, A. P.
    Ragunath, K. P.
    Selvakumar, S.
    Vanitha, K.
    Kannan, P.
    PLANT SCIENCE TODAY, 2024, 11 (04): : 412 - 425
  • [25] Refining components of a satellite-based surface energy balance model to complex land-use systems
    Allen, Richard G.
    Kjaersgaard, Jeppe H.
    Trezza, Ricardo
    Oliveira, A.
    Robison, C.
    Lorite-Torres, I.
    REMOTE SENSING AND HYDROLOGY, 2012, 352 : 73 - +
  • [26] Evapotranspiration Estimation Using Surface Energy Balance-Based Evaporative Fraction for Water Management in Canal Irrigation Command
    Parmar, H., V
    Gontia, N. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) : 373 - 384
  • [27] Satellite-Based Estimation of Instantaneous Radiative Fluxes Over Continental USA - a Case Study
    Dutta, Dibyendu
    Mahalakshmi, D. V.
    Singh, Manisha
    Goyal, Prachi
    Paul, Soubhik
    Sharma, Jaswant Raj
    Dadhwal, Vinay Kumar
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2015, 43 (04) : 841 - 849
  • [28] Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile
    Yang, Zhongwen
    Hsu, Kuolin
    Sorooshian, Soroosh
    Xu, Xinyi
    Braithwaite, Dan
    Verbist, Koen M. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (08) : 3790 - 3806
  • [29] Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model
    Yan, H.
    Wang, S. Q.
    Billesbach, D.
    Oechel, W.
    Zhang, J. H.
    Meyers, T.
    Martin, T. A.
    Matamala, R.
    Baldocchi, D.
    Bohrer, G.
    Dragoni, D.
    Scott, R.
    REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 581 - 595
  • [30] Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia
    Park, Jongmin
    Baik, Jongjin
    Choi, Minha
    CATENA, 2017, 156 : 305 - 314