Implications of fitting a two-compartment model in single-shell diffusion MRI

被引:4
|
作者
Chad, Jordan A. [1 ,2 ]
Sochen, Nir [3 ,4 ]
Chen, J. Jean [1 ,2 ,7 ]
Pasternak, Ofer [5 ,6 ]
机构
[1] Rotman Res Inst, Baycrest Acad Res & Educ, Toronto, ON, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[3] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[4] Tel Aviv Univ, Sch Neurosci, Tel Aviv, Israel
[5] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[6] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, Boston, MA USA
[7] Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
diffusion MRI; white matter; brain aging; modeling; sensitivity; WHITE-MATTER; COGNITIVE IMPAIRMENT; TENSOR; DEGENERATION; LIMITATIONS; ANISOTROPY; ADULTS; NODDI;
D O I
10.1088/1361-6560/ad0216
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is becoming increasingly common for studies to fit single-shell diffusion MRI data to a two-compartment model, which comprises a hindered cellular compartment and a freely diffusing isotropic compartment. These studies consistently find that the fraction of the isotropic compartment (f) is sensitive to white matter (WM) conditions and pathologies, although the actual biological source of changes in f has not been validated. In this work we put aside the biological interpretation of f and study the sensitivity implications of fitting single-shell data to a two-compartment model. We identify a nonlinear transformation between the one-compartment model (diffusion tensor imaging, DTI) and a two-compartment model in which the mean diffusivities of both compartments are effectively fixed. While the analytic relationship implies that fitting this two-compartment model does not offer any more information than DTI, it explains why metrics derived from a two-compartment model can exhibit enhanced sensitivity over DTI to certain types of WM processes, such as age-related WM differences. The sensitivity enhancement should not be viewed as a substitute for acquiring multi-shell data. Rather, the results of this study provide insight into the consequences of choosing a two-compartment model when only single-shell data is available.
引用
收藏
页数:18
相关论文
共 31 条
  • [1] Biophysical compartment models for single-shell diffusion MRI in the human brain: a model fitting comparison
    Davis, Andrew D.
    Hassel, Stefanie
    Arnott, Stephen R.
    Hall, Geoffrey B.
    Harris, Jacqueline K.
    Zamyadi, Mojdeh
    Downar, Jonathan
    Frey, Benicio N.
    Lam, Raymond W.
    Kennedy, Sidney H.
    Strother, Stephen C.
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (05)
  • [2] Evaluating Fiber Orientation Dispersion Measures Computed From Single-Shell Diffusion MRI
    Villalon-Reina, Julio E.
    Nir, Talia M.
    Nourollahimoghadam, Elnaz
    Dhinagar, Nikhil
    Jahanshad, Neda
    Thompson, Paul M.
    Henriques, Rafael Neto
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [3] Apparent propagator anisotropy from single-shell diffusion MRI acquisitions
    Aja-Fernandez, Santiago
    Tristan-Vega, Antonio
    Jones, Derek K.
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (05) : 2869 - 2881
  • [4] Monte Carlo study of a two-compartment exchange model of diffusion
    Fieremans, Els
    Novikov, Dmitry S.
    Jensen, Jens H.
    Helpern, Joseph A.
    NMR IN BIOMEDICINE, 2010, 23 (07) : 711 - 724
  • [5] AN EVALUATION OF REGULARIZATION STRATEGIES FOR SUBSAMPLED SINGLE-SHELL DIFFUSION MRI
    Liu, Yunsong
    Liao, Congyu
    Setsompop, Kawin
    Haldar, Justin P.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1437 - 1440
  • [6] Viability of AMURA biomarkers from single-shell diffusion MRI in clinical studies
    Martin-Martin, Carmen
    Planchuelo-Gomez, Alvaro
    Guerrero, Angel L.
    Garcia-Azorin, David
    Tristan-Vega, Antonio
    de Luis-Garcia, Rodrigo
    Aja-Fernandez, Santiago
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [7] Improved fidelity of brain microstructure mapping from single-shell diffusion MRI
    Taquet, Maxime
    Scherrer, Benoit
    Boumal, Nicolas
    Peters, Jurriaan M.
    Macq, Benoit
    Warfield, Simon K.
    MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 268 - 286
  • [8] Learning-based Free-Water Correction using Single-shell Diffusion MRI
    Yao, Tianyuan
    Archer, Derek B.
    Kanakaraj, Praitayini
    Newlin, Nancy
    Bao, Shunxing
    Moyer, Daniel
    Schilling, Kurt
    Landman, Bennett A.
    Huo, Yuankai
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [9] Deep learning-based free-water correction for single-shell diffusion MRI
    Yao, Tianyuan
    Archer, Derek B.
    Kanakaraj, Praitayini
    Newlin, Nancy
    Bao, Shunxing
    Moyer, Daniel
    Schilling, Kurt
    Landman, Bennett A.
    Huo, Yuankai
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [10] Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models
    Kunz, Nicolas
    Zhang, Hui
    Vasung, Lana
    O'Brien, Kieran R.
    Assaf, Yaniv
    Lazeyras, Francois
    Alexander, Daniel C.
    Hueppi, Petra S.
    NEUROIMAGE, 2014, 96 : 288 - 299