Surrogate Model Development for Slope Stability Analysis Using Machine Learning

被引:4
|
作者
Li, Xianfeng [1 ,2 ]
Nishio, Mayuko [3 ]
Sugawara, Kentaro [4 ]
Iwanaga, Shoji [4 ]
Chun, Pang-jo [1 ,2 ]
机构
[1] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan
[2] Univ Tokyo, Dept Civil Engn, Tokyo 1138656, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, Dept Engn Mech & Energy, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[4] Geosci Res Lab Co Ltd, 2-3-25 Koraku, Bunkyo City, Tokyo 1120004, Japan
关键词
slope stability; factor of safety; machine learning; surrogate model; LIMIT EQUILIBRIUM; REGRESSION; PREDICTION;
D O I
10.3390/su151410793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In many countries, slope failure is a complex natural issue that can result in serious natural hazards, such as landslide dams. It is associated with the challenge of slope stability evaluation, which involves the classification problem of slopes and the regression problem of predicting the factor of safety (FOS) value. This study explored the implementation of machine learning to analyze slope stability using a comprehensive database of 880 homogenous slopes (266 unstable and 614 stable) based on a simulation model developed as a surrogate model. A classification model was developed to categorize slopes into three classes, including S (stable, FOS > 1.2), M (marginally stable, 1.0 = FOS = 1.2), and U (unstable, FOS < 1.0), and a regression model was used to predict the target FOS value. The results confirmed the efficiency of the developed classification model via testing, achieving an accuracy of 0.9222, with 96.2% accuracy for the U class, 55% for the M class, and 95.2% for the S class. When U and M are in the same class (i.e., the U + M class), the test accuracy is 0.9315, with 93.3% accuracy for the S class and 92.9% accuracy for the U + M class. The low accuracy level for class M led to minor inaccuracies, which can be attributed to a data imbalance. Additionally, the regression model was found to have a high correlation coefficient R-square value of 0.9989 and a low test mean squared error value of 5.03 x 10(-4), which indicates a strong relationship between the FOS values and the selected slope parameters. The significant difference in the elapsed time between the traditional method and the developed surrogate model for slope stability analysis highlights the potential benefits of machine learning.
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Machine Learning in the Stochastic Analysis of Slope Stability: A State-of-the-Art Review
    Xu, Haoding
    He, Xuzhen
    Shan, Feng
    Niu, Gang
    Sheng, Daichao
    MODELLING, 2023, 4 (04): : 426 - 453
  • [32] Efficient reliability analysis of unsaturated slope stability under rapid drawdown using XGBoost-based surrogate model
    Zhang, Wengang
    Ran, Bo
    Gu, Xin
    Zhang, Yanmei
    Zou, Yulin
    Wang, Peiqing
    SOILS AND FOUNDATIONS, 2024, 64 (06)
  • [33] Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis
    Nanehkaran, Yaser Ahangari
    Pusatli, Tolga
    Jin Chengyong
    Chen, Junde
    Cemiloglu, Ahmed
    Azarafza, Mohammad
    Derakhshani, Reza
    WATER, 2022, 14 (22)
  • [34] Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm
    Bardhan, Abidhan
    Samui, Pijush
    TRANSPORTATION GEOTECHNICS, 2022, 37
  • [35] Erratum to: Development of a model for analysis of slope stability for circular mode failure using genetic algorithm
    Amin Manouchehrian
    Javad Gholamnejad
    Mostafa Sharifzadeh
    Environmental Earth Sciences, 2014, 71 (3) : 1279 - 1280
  • [36] Machine learning surrogate model for reliability analysis of RC columns with reverse curvature
    Preuss, Arthur de C.
    Gomes, Herbert M.
    STRUCTURAL ENGINEERING AND MECHANICS, 2024, 92 (01) : 65 - 79
  • [37] Slope Stability Analysis Using Radial Slices: A Mathematical Model
    Kumar G.P.
    Das A.
    Rai R.
    Jaiswal A.
    Journal of The Institution of Engineers (India): Series D, 2015, 96 (02) : 189 - 193
  • [38] Estimation of slope stability using ensemble-based hybrid machine learning approaches
    Ragam, Prashanth
    Kumar, N. Kushal
    Ajith, Jubilson E.
    Karthik, Guntha
    Himanshu, Vivek Kumar
    Machupalli, Divya Sree
    Murlidhar, Bhatawdekar Ramesh
    FRONTIERS IN MATERIALS, 2024, 11
  • [39] Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study
    Qi, Chongchong
    Tang, Xiaolin
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 118 : 112 - 122
  • [40] Analysis of Slope Stability Based on Four Machine Learning Models An Example of 188 Slopes
    Zhang, Menghan
    Wei, Jin
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2025,