3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration

被引:30
|
作者
Soleymani, Sina [1 ]
Naghib, Seyed Morteza [1 ]
机构
[1] Iran Univ Sci & Technol IUST, Sch Adv Technol, Nanotechnol Dept, Tehran, Iran
关键词
3D printing; Hydroxyapatite; 4D printing; Polymer; Scaffold; Bone tissue engineering; IN-VITRO; COMPOSITE SCAFFOLDS; DRUG-DELIVERY; HYBRID SCAFFOLDS; MECHANICAL-PROPERTIES; CONTROLLED-RELEASE; CERAMIC SCAFFOLDS; HYALURONIC-ACID; CHITOSAN; COLLAGEN;
D O I
10.1016/j.heliyon.2023.e19363
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The osseous tissue can be classified as a nanocomposite that encompasses a complex interweaving of organic and inorganic matrices. This intricate amalgamation consists of a collagen component and a mineral phase that are intricately arranged to form elaborate and perforated configurations. Hydroxyapatite, whether synthesized artificially or obtained from natural sources, has garnered considerable attention as a composite material in the field of bone tissue engineering due to its striking resemblance to bone in terms of structure and characteristics. Hydroxyapatite (HA) constitutes the predominant ceramic biomaterial for biomedical applications due to its ability to replicate the mineral composition of vertebrate bone. Nonetheless, it is noteworthy that the present biomimetic substance exhibits unfavorable mechanical characteristics, characterized by insufficient tensile and compressive strength, thus rendering it unsuitable for effective employment in the field of bone tissue engineering. Due to its beneficial attributes, hydroxyapatite (HA) is frequently employed in conjunction with various polymers and crosslinkers as composites to enhance mechanical properties and overall efficacy of implantable biomaterials engineered. The restoration of skeletal defects through the use of customized replacements is an effective way to replace damaged or lost bone structures. This method not only restores the bones' original functions but also reinstates their initial aesthetic appearance. The utilization of hydroxyapatitepolymer composites within 3D-printed grafts necessitates meticulous optimization of both mechanical and biological properties, in order to ensure their suitability for employment in medical devices. The utilization of 3D-printing technology represents an innovative approach in the manufacturing of HA-based scaffolds, which offers advantageous prospects for personalized bone regeneration. The expeditious prototyping method, with emphasis on the application of 3D printing, presents a viable approach in the development of bespoke prosthetic implants, grounded on healthcare data sets. 4D printing approach is an evolved form of 3D printing that utilizes programmable materials capable of altering the intended shape of printed structures, contingent upon single or dual stimulating factors. These factors include aspects such as pH level, temperature, humidity, crosslinking degree, and leaching factors.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] 3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering
    Polley, Christian
    Distler, Thomas
    Detsch, Rainer
    Lund, Henrik
    Springer, Armin
    Boccaccini, Aldo R.
    Seitz, Hermann
    MATERIALS, 2020, 13 (07)
  • [22] 3D Printing of Microspheres for Tissue Engineering Scaffolds
    Lohfeld, S.
    Salash, J. R.
    McHugh, P. E.
    Detamore, M. S.
    TISSUE ENGINEERING PART A, 2015, 21 : S340 - S340
  • [23] 3D printing of PLGA scaffolds for tissue engineering
    Mironov, Anton V.
    Grigoryev, Aleksey M.
    Krotova, Larisa I.
    Skaletsky, Nikolaj N.
    Popov, Vladimir K.
    Sevastianov, Viktor I.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 104 - 109
  • [24] 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
    Shao, Huiping
    He, Jianzhuang
    Lin, Tao
    Zhang, Zhinan
    Zhang, Yumeng
    Liu, Shuwen
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1163 - 1170
  • [25] 3D Printing of Polyester Scaffolds for Bone Tissue Engineering: Advancements and Challenges
    Salehabadi, Mojtaba
    Mirzadeh, Hamid
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [26] Advancements in 3D-4D printing of hydroxyapatite composites for bone tissue engineering
    Chopra, Vianni
    Fuentes-Velasco, Valeria
    Nacif-Lopez, Samyr R.
    Melendez-Malpicca, Juliette
    Mendez-Hernandez, Ana S.
    Ramos-Mendez-Iris, Luis F.
    Arroyo-Jimenez, Denev A.
    Reyes-Segura, Diana G.
    Gonzalez-Y-Mendoza, Pamela
    Sanchez-Hernandez, K. Aline
    Spinola-Corona, Estefania
    Vazquez-del-Mercado-Pardino, Jorge A.
    Chauhan, Gaurav
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 38819 - 38840
  • [27] 3D Printing of PLLA/Biomineral Composite Bone Tissue Engineering Scaffolds
    Gang, Fangli
    Ye, Weilong
    Ma, Chunyang
    Wang, Wenting
    Xiao, Yi
    Liu, Chang
    Sun, Xiaodan
    MATERIALS, 2022, 15 (12)
  • [28] Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds
    Ren, Ya
    Zhang, Changru
    Liu, Yihao
    Kong, Weiqing
    Yang, Xue
    Niu, Haoyi
    Qiang, Lei
    Yang, Han
    Yang, Fei
    Wang, Chengwei
    Wang, Jinwu
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 10 (01) : 255 - 270
  • [29] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [30] Direct Integration of 3D Printing and Cryogel Scaffolds for Bone Tissue Engineering
    Olevsky, Levi M.
    Anup, Amritha
    Jacques, Mason
    Keokominh, Nadia
    Holmgren, Eric P.
    Hixon, Katherine R.
    BIOENGINEERING-BASEL, 2023, 10 (08):