RankMix: Data Augmentation forWeakly Supervised Learning of Classifying Whole Slide Images with Diverse Sizes and Imbalanced Categories

被引:19
作者
Chen, Yuan-Chih [1 ]
Lu, Chun-Shien [1 ]
机构
[1] Acad Sinica, IIS, Taipei, Taiwan
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.02292
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whole Slide Images (WSIs) are usually gigapixel in size and lack pixel-level annotations. The WSI datasets are also imbalanced in categories. These unique characteristics, significantly different from the ones in natural images, pose the challenge of classifying WSI images as a kind of weakly supervise learning problems. In this study, we propose, RankMix, a data augmentation method of mixing ranked features in a pair of WSIs. RankMix introduces the concepts of pseudo labeling and ranking in order to extract key WSI regions in contributing to the WSI classification task. A two-stage training is further proposed to boost stable training and model performance. To our knowledge, the study of weakly supervised learning from the perspective of data augmentation to deal with the WSI classification problem that suffers from lack of training data and imbalance of categories is relatively unexplored.
引用
收藏
页码:23936 / 23945
页数:10
相关论文
共 48 条
[1]  
[Anonymous], 2022, CVPR, DOI DOI 10.1109/CVPR52688.2022.00676
[2]  
Banerji Sugata, 2022, WILEY INTERDISCIPLIN, V12, P1
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[5]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[6]   Stain Mix-Up: Unsupervised Domain Generalization for Histopathology Images [J].
Chang, Jia-Ren ;
Wu, Min-Sheng ;
Yu, Wei-Hsiang ;
Chen, Chi-Chung ;
Yang, Cheng-Kung ;
Lin, Yen-Yu ;
Yeh, Chao-Yuan .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 :117-126
[7]   Optimal Edge Nodes Deployment With Multi Association for Smart Health [J].
Chen, Chao ;
Li, Peng ;
Jian, Xin ;
Wu, Langyun ;
Yang, Jun .
IEEE TRANSACTIONS ON MOLECULAR BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS, 2022, 8 (01) :1-8
[8]   Flow-Mixup: Classifying Multi-labeled Medical Images with Corrupted Labels [J].
Chen, Jintai ;
Yu, Hongyun ;
Feng, Ruiwei ;
Chen, Danny Z. ;
Wu, Jian .
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, :534-541
[9]  
Chen T., 2020, Advances in Neural Information Processing Systems, V33, P22243
[10]  
Chikontwe Philip, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P519, DOI 10.1007/978-3-030-59722-1_50