Facile gas-steamed synthesis strategy of N, F co-doped defective porous carbon for enhanced oxygen-reduction performance in microbial fuel cells

被引:4
|
作者
Zhong, Kengqiang [1 ,2 ]
You, Henghui [1 ,3 ]
Huang, Lei [1 ]
Li, Han [1 ]
Huang, Linzhe [1 ]
Liu, Xianjie [4 ]
Zhang, Hongguo [1 ,5 ,6 ]
机构
[1] Guangzhou Univ, Sch Environm Sci & Engn, Key Lab Water Qual & Conservat Pearl River Delta, Guangzhou 510006, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Urban Pollutant Convers, Dept Environm Sci & Engn, Hefei 230026, Peoples R China
[3] Guangzhou Res Ctr City Management Technol, Guangzhou 510170, Peoples R China
[4] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden
[5] Guangzhou Univ, Linkoping Univ, Res Ctr Urban Sustainable Dev, Guangzhou 510006, Peoples R China
[6] Guangzhou Univ, Guangzhou Higher Educ Mega Ctr, Sch Environm Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Microbial fuel cell; Oxygen reduction reaction; Metal organic framework; Nitrogen and fluorine co-doping; METAL-ORGANIC FRAMEWORKS; REDUCED GRAPHENE OXIDE; ACTIVE-SITE; NANOPOROUS CARBON; SURFACE-AREA; ELECTROCATALYST; NITROGEN; EFFICIENT; CATALYSTS; NANOFIBERS;
D O I
10.1016/j.jpowsour.2023.233232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The metal-free carbon-based catalyst with low cost and high oxygen reduction reaction (ORR) activity is urgently desired to satisfy the demands of microbial fuel cells (MFCs). However, it is still a great challenge to develop a facile and feasible strategy to construct efficient active sites of heteroatom doping for carbon-based electrocatalyst. Herein, we report a strategy based on an ammonium fluoride (NH4F) gas-steamed metal-organic frameworks (MOFs) to heighten structural defects and density of N, F active sites of metal-free catalyst. Oxygen temperature-programmed deposition and density functional theory results confirm that the NH4F gas-steamed process greatly enhances the adsorption affinity of O2 and oxygen intermediates on the catalysts. The resulted N and F co-doped porous carbon cage (FNC-15) demonstrates outstanding ORR catalytic activity and long-term stability in alkaline and neutral electrolytes. This work proposes a facile and efficient in situ gas-steamed strategy to develop metal-free cathode catalysts with superior performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Facile synthesis of B, N co-doped three-dimensional porous graphitic carbon toward oxygen reduction reaction and oxygen evolution reaction
    Huang, Xiaobo
    Wang, Qing
    Jiang, Dong
    Huang, Yongmin
    CATALYSIS COMMUNICATIONS, 2017, 100 : 89 - 92
  • [22] Facile Synthesis of Fe/N/S-Doped Carbon Tubes as High-Performance Cathode and Anode for Microbial Fuel Cells
    Yang, Wei
    Li, Jun
    Lan, Linghan
    Li, Zhuo
    Wei, Wenli
    Lu, Jia En
    Chen, Shaowei
    CHEMCATCHEM, 2019, 11 (24) : 6070 - 6077
  • [23] Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells
    Wuli Han
    Xuemin Yan
    Yu Jiang
    Mei Ping
    Xiaoqing Deng
    Yan Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 280 - 286
  • [24] Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells
    韩午丽
    颜学敏
    JIANG Yu
    PING Mei
    DENG Xiaoqing
    张研
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2020, 35 (02) : 280 - 286
  • [25] Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells
    Han, Wuli
    Yan, Xuemin
    Jiang, Yu
    Ping, Mei
    Deng, Xiaoqing
    Zhang, Yan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (02): : 280 - 286
  • [26] The feasibility of typical metal-organic framework derived Fe, Co, N co-doped carbon as a robust electrocatalyst for oxygen reduction reaction in microbial fuel cell
    Xue, Wendan
    Zhou, Qixing
    Li, Fengxiang
    ELECTROCHIMICA ACTA, 2020, 355
  • [27] Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction
    Zhang, Mingli
    Song, Yanliang
    Tao, Hengcong
    Yan, Chao
    Masa, Justus
    Liu, Yongchao
    Shi, Xiaoyou
    Liu, Shizhen
    Zhang, Xu
    Sun, Zhenyu
    SUSTAINABLE ENERGY & FUELS, 2018, 2 (08): : 1820 - 1827
  • [28] Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction
    Chang, Fangfang
    Su, Panpan
    Guharoy, Utsab
    Ye, Runping
    Ma, Yanfu
    Zheng, Huajun
    Jia, Yi
    Liu, Jian
    CHINESE CHEMICAL LETTERS, 2023, 34 (02)
  • [29] Highly conductive skeleton Graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells
    Zhong, Kengqiang
    Wang, Yan
    Wu, Qikai
    You, Henghui
    Zhang, Hongguo
    Su, Minhua
    Liang, Rouying
    Zuo, Jianliang
    Yang, Shaoran
    Tang, Jinfeng
    JOURNAL OF POWER SOURCES, 2020, 467
  • [30] Porous Fe, N co-doped carbon with high electrocatalytic oxygen reduction reaction performance in Zn-air battery
    Wang, Mengyang
    Cao, Zuolin
    Li, Longyu
    Ren, Shijie
    CARBON, 2022, 200 : 337 - 346