Interconnected Sn@SnO2 Nanoparticles as an Anode Material for Lithium-Ion Batteries

被引:14
作者
Rodriguez, Jassiel R. [4 ,5 ]
Hamann, Henry J. [1 ]
Mitchell, Garrett M. [2 ,3 ]
Ortalan, Volkan [2 ,3 ]
Gribble, Daniel [4 ]
Xiong, Beichen [4 ]
Pol, Vilas G. [4 ]
Ramachandran, P. Veeraraghavan [1 ]
机构
[1] Purdue Univ, Herbert C Brown Ctr Borane Res, Dept Chem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[5] Ctr Invest Cient & Educ Super Ensenada, Ensenada 22860, BC, Mexico
关键词
lithium-ion battery; ammonia-borane reduction; tin; core-shell nanoparticle; discharge-chargecapacity; TIN; CHALCOGENIDES; PERFORMANCE; REDUCTION; COMPOSITE; STORAGE; ALLOY;
D O I
10.1021/acsanm.3c00854
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ammonia-borane reduction of tin (II) chloride was utilizedto preparecustomized and interconnected Sn@SnO2 core-shellnanoparticles. Remarkably, the Sn@SnO2-based electrodedelivered a reversible capacity of 722 mAh g(-1) at0.5 C after 200 cycles with a Coulombic efficiency of similar to 99%.Also, this electrode exhibited a high rate capability (564 mAh g(-1) at 1.0 C), low charge transfer resistance (44.7 omega),and reasonable electrode polarization (146 mV vs Li/Li+), which led to a high capacity retention (similar to 94%). Additionally,the kinetics of Li-ion storage of the sample revealed that the capacitance contribution plays a main roleat fast C-rates. This new nanoarchitecture is promising for stablelithium-ion storage because of the presence of voids and a SnO2 shell in the interconnected Sn@SnO2 nanoparticles,in which the cavities mitigate its volume expansion upon cycling;meanwhile, the SnO2 layer increases its capacity.
引用
收藏
页码:11070 / 11076
页数:7
相关论文
共 50 条
  • [41] SnO2@C/CC Composite Anode for Lithium-ion Batteries
    Wang, Jiaying
    Zhang, Mengmeng
    Chen, Jiayuan
    Li, Hui
    Wang, Jiale
    Wang, Chunrui
    CHEMISTRY LETTERS, 2022, 51 (08) : 799 - 802
  • [42] Nanocolumnar Structured Porous Cu-Sn Thin Film as Anode Material for Lithium-Ion Batteries
    Polat, Deniz B.
    Lu, Jun
    Abouimrane, Ali
    Keles, Ozgul
    Amine, Khalil
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) : 10877 - 10885
  • [43] Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries
    Liang, Shuzhao
    Zhu, Xuefeng
    Lian, Peichao
    Yang, Weishen
    Wang, Haihui
    JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (06) : 1400 - 1404
  • [44] Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries
    Wen, Zhenhai
    Cui, Shumao
    Kim, Haejune
    Mao, Shun
    Yu, Kehan
    Lu, Ganhua
    Pu, Haihui
    Mao, Ou
    Chen, Junhong
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (08) : 3300 - 3306
  • [45] Electrochemical performance of SnO2/C nanocomposites as anode materials for lithium-ion batteries
    Fan, Yingqiang
    Chen, Xiujuan
    Zhang, Laixi
    Wu, Jiakui
    Wang, Linlin
    Yu, Shurong
    Wu, Mingliang
    IONICS, 2023, 29 (02) : 497 - 504
  • [46] Oxidized Co-Sn nanoparticles as long-lasting anode materials for lithium-ion batteries
    Walter, Marc
    Doswald, Simon
    Krumeich, Frank
    He, Meng
    Widmer, Roland
    Stadie, Nicholas P.
    Kovalenko, Maksym V.
    NANOSCALE, 2018, 10 (08) : 3777 - 3783
  • [47] Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries
    Kuriganova, Alexandra B.
    Vlaic, Codruta A.
    Ivanov, Svetlozar
    Leontyeva, Daria V.
    Bund, Andreas
    Smirnova, Nina V.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (05) : 527 - 538
  • [48] A broad pore size distribution mesoporous SnO2 as anode for lithium-ion batteries
    Shiva, Konda
    Kiran, M. S. R. N.
    Ramamurty, U.
    Asokan, S.
    Bhattacharyya, Aninda J.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) : 3643 - 3649
  • [49] Flakes-stacked Sn/SnO2/C composite as highly stable anode material for lithium-ion batteries
    Sun Q.
    Kong X.
    Liu W.
    Xu B.
    Hu P.
    Gao Z.
    Huang Y.
    Journal of Alloys and Compounds, 2020, 831
  • [50] Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries
    Huang, Youguo
    Pan, Qichang
    Wang, Hongqiang
    Ji, Cheng
    Wu, Xianming
    He, Zeqiang
    Li, Qingyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (19) : 7185 - 7189