Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations

被引:72
作者
Doudesis, Dimitrios M. [1 ,2 ]
Lee, Kuan Ken [1 ]
Boeddinghaus, Jasper [1 ,3 ,4 ]
Bularga, Anda [1 ]
Ferry, Amy E. [1 ]
Tuck, Chris D. [1 ]
Lowry, Matthew T. H. [1 ]
Lopez-Ayala, Pedro [3 ,4 ]
Nestelberger, Thomas [3 ,4 ]
Koechlin, Luca E. [3 ,4 ,5 ]
Bernabeu, Miguel [2 ,6 ]
Neubeck, Lis [7 ]
Anand, Atul [1 ]
Schulz, Karen [8 ]
Apple, Fred [9 ,10 ,11 ]
Parsonage, William J. [12 ]
Greenslade, Jaimi [13 ,14 ,15 ]
Cullen, Louise [13 ,14 ,15 ]
Pickering, John [16 ,17 ]
Than, Martin O. [16 ]
Gray, Alasdair [18 ]
Mueller, Christian W. [3 ,4 ]
Mills, Nicholas [1 ,2 ]
CoDE-ACS Investigators
机构
[1] Univ Edinburgh, Univ Ctr Cardiovasc Sci, British Heart Fdn, Edinburgh, Scotland
[2] Univ Edinburgh, Usher Inst, Edinburgh, Scotland
[3] Univ Basel, Univ Hosp Basel, Cardiovasc Res Inst Basel, Basel, Switzerland
[4] Univ Basel, Univ Hosp Basel, Dept Cardiol, Basel, Switzerland
[5] Univ Basel, Univ Hosp Basel, Dept Cardiac Surg, Basel, Switzerland
[6] Univ Edinburgh, Bayes Ctr, Edinburgh, Scotland
[7] Edinburgh Napier Univ, Sch Hlth & Social Care, Edinburgh, Scotland
[8] Hennepin Healthcare Res Inst, Cardiac Biomarkers Trials Lab, Minneapolis, MN USA
[9] Hennepin Cty Med Ctr, Dept Lab Med, Minneapolis, MN USA
[10] Hennepin Cty Med Ctr, Dept Pathol, Minneapolis, MN USA
[11] Univ Minnesota, Minneapolis, MN USA
[12] Queensland Univ Technol, Australian Ctr Hlth Serv Innovat, Ctr Healthcare Transformat, Brisbane, Qld, Australia
[13] Royal Brisbane & Womens Hosp, Emergency & Trauma Ctr, Brisbane, Qld, Australia
[14] Univ Queensland, Sch Med, Brisbane, Qld, Australia
[15] Queensland Univ Technol, Fac Hlth, Brisbane, Qld, Australia
[16] Univ Otago, Dept Med, Christchurch, New Zealand
[17] Christchurch Hosp, Emergency Dept, Christchurch, New Zealand
[18] Royal Infirm Edinburgh NHS Trust, Emergency Med Res Grp Edinburgh, Edinburgh, Scotland
基金
瑞士国家科学基金会; 美国国家卫生研究院; 英国医学研究理事会;
关键词
HIGH-SENSITIVITY TROPONIN; EMERGENCY-DEPARTMENT PATIENTS; ACUTE CORONARY SYNDROME; CHEST-PAIN SYMPTOMS; RISK STRATIFICATION; RELATIVE CHANGES; RULE-OUT; I ASSAY; POPULATION; VALIDATION;
D O I
10.1038/s41591-023-02325-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A clinical decision support system for diagnosis of myocardial infarction, based on machine learning models that use a single measurement of high-sensitivity troponin, outperforms clinical guidelines that use fixed cardiac troponin thresholds for diagnosis. Although guidelines recommend fixed cardiac troponin thresholds for the diagnosis of myocardial infarction, troponin concentrations are influenced by age, sex, comorbidities and time from symptom onset. To improve diagnosis, we developed machine learning models that integrate cardiac troponin concentrations at presentation or on serial testing with clinical features and compute the Collaboration for the Diagnosis and Evaluation of Acute Coronary Syndrome (CoDE-ACS) score (0-100) that corresponds to an individual's probability of myocardial infarction. The models were trained on data from 10,038 patients (48% women), and their performance was externally validated using data from 10,286 patients (35% women) from seven cohorts. CoDE-ACS had excellent discrimination for myocardial infarction (area under curve, 0.953; 95% confidence interval, 0.947-0.958), performed well across subgroups and identified more patients at presentation as low probability of having myocardial infarction than fixed cardiac troponin thresholds (61 versus 27%) with a similar negative predictive value and fewer as high probability of having myocardial infarction (10 versus 16%) with a greater positive predictive value. Patients identified as having a low probability of myocardial infarction had a lower rate of cardiac death than those with intermediate or high probability 30 days (0.1 versus 0.5 and 1.8%) and 1 year (0.3 versus 2.8 and 4.2%; P < 0.001 for both) from patient presentation. CoDE-ACS used as a clinical decision support system has the potential to reduce hospital admissions and have major benefits for patients and health care providers.
引用
收藏
页码:1201 / +
页数:29
相关论文
共 67 条
[1]   Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram [J].
Al-Zaiti S. ;
Besomi L. ;
Bouzid Z. ;
Faramand Z. ;
Frisch S. ;
Martin-Gill C. ;
Gregg R. ;
Saba S. ;
Callaway C. ;
Sejdić E. .
Nature Communications, 11 (1)
[2]  
Anand A, 2021, CIRCULATION, V143, P2214, DOI [10.1161/circulationaha.120.052380, 10.1161/CIRCULATIONAHA.120.052380]
[3]   National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical issues for biochemical markers of acute coronary syndromes [J].
Apple, Fred S. ;
Jesse, Robert L. ;
Newby, L. Kristin ;
Wu, Alan H. B. ;
Christenson, Robert H. ;
Cannon, Christopher P. ;
Francis, Gary ;
Morrow, David A. ;
Ravkilde, Jan ;
Storrow, Alan B. ;
Tang, Wilson ;
Jaffe, Allan S. ;
Mair, Johannes ;
Ordonez-Llanos, Jordi ;
Pagani, Franca ;
Panteghini, Mauro ;
Tate, Jillian .
CLINICAL CHEMISTRY, 2007, 53 (04) :547-551
[4]   Temporal Release of High-Sensitivity Cardiac Troponin T and I and Copeptin After Brief Induced Coronary Artery Balloon Occlusion in Humans [J].
Arnadottir, Asthildur ;
Pedersen, Sune ;
Bo Hasselbalch, Rasmus ;
Goetze, Jens P. ;
Friis-Hansen, Lennart J. ;
Bloch-Munster, Anna-Marie ;
Skov Jensen, Jan ;
Bundgaard, Henning ;
Iversen, Kasper .
CIRCULATION, 2021, 143 (11) :1095-1104
[5]   Prognostic value of elevated high-sensitivity cardiac troponin T levels in a low risk outpatient population with cardiovascular disease [J].
Biener, Moritz ;
Giannitsis, Evangelos ;
Lamerz, Judith ;
Mueller-Hennessen, Matthias ;
Vafaie, Mehrshad ;
Katus, Hugo A. .
EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2016, 5 (06) :409-418
[6]  
Biener Moritz, 2013, Int J Cardiol, V167, P1134, DOI 10.1016/j.ijcard.2012.09.122
[7]   Troponin-only Manchester Acute Coronary Syndromes (T-MACS) decision aid: single biomarker re-derivation and external validation in three cohorts [J].
Body, Richard ;
Carlton, Edward ;
Sperrin, Matthew ;
Lewis, Philip S. ;
Burrows, Gillian ;
Carley, Simon ;
McDowell, Garry ;
Buchan, Iain ;
Greaves, Kim ;
Mackway-Jones, Kevin .
EMERGENCY MEDICINE JOURNAL, 2017, 34 (06) :349-+
[8]   Rapid Exclusion of Acute Myocardial Infarction in Patients With Undetectable Troponin Using a High-Sensitivity Assay [J].
Body, Richard ;
Carley, Simon ;
McDowell, Garry ;
Jaffe, Allan S. ;
France, Michael ;
Cruickshank, Kennedy ;
Wibberley, Christopher ;
Nuttall, Michelle ;
Mackway-Jones, Kevin .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (13) :1333-1339
[9]   Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction [J].
Boeddinghaus, Jasper ;
Nestelberger, Thomas ;
Twerenbold, Raphael ;
Neumann, Johannes Tobias ;
Lindahl, Berta ;
Giannitsis, Evangelos ;
Soerensen, Nils Arne ;
Badertscher, Patrick ;
Jann, Janina E. ;
Wussler, Desiree ;
Puelacher, Christian ;
Gimenez, Maria Rubini ;
Wildi, Karin ;
Strebel, Ivo ;
de Lavallaz, Jeanne Du Fay ;
Selman, Farah ;
Sabti, Zaid ;
Kozhuharov, Nikola ;
Potlukova, Eliska ;
Rentsch, Katharina ;
Miro, Oscar ;
Martin-Sanchez, F. Javier ;
Morawiec, Beata ;
Parenica, Jiri ;
Lohrmann, Jens ;
Kloos, Wanda ;
Buser, Andreas ;
Geigy, Nicolas ;
Keller, Dagmar, I ;
Osswald, Stefan ;
Reichlin, Tobias ;
Westermann, Dirk ;
Blankenberg, Stefan ;
Mueller, Christian .
EUROPEAN HEART JOURNAL, 2018, 39 (42) :3780-3794
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32