Dielectric Function of Gold Nanoparticles Synthesized Using Camellia sinensis Extract

被引:3
作者
Melo, Arthur A. A. [1 ]
Rodrigues, Eloise P. P. [1 ]
Vasconcelos, Jomar S. S. [2 ,3 ]
Medeiros, Eliton S. S. [4 ]
Oliveira, Leiva C. C. [5 ]
Lima, Antonio M. N. [1 ,2 ]
机构
[1] Univ Fed Campina Grande, Grad Program Elect Engn, Campina Grande, Brazil
[2] Univ Fed Campina Grande, Dept Elect Engn, Av Aprigio Veloso 882, BR-58400900 Campina Grande, PB, Brazil
[3] Inst Fed Maranhao, Dept Electroelect, Sao Luis, Brazil
[4] Univ Fed Paraiba, Dept Mat Engn, Joao Pessoa, Paraiba, Brazil
[5] Univ Fed Semiarido, Dept Comp, Mossoro, Brazil
关键词
Absorption coefficient; Gold nanoparticles synthesis; Dielectric function; GREEN SYNTHESIS; OPTICAL-PROPERTIES; AU;
D O I
10.1007/s11468-022-01776-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The goal of this study is to show how to synthesize gold nanoparticles, and present a method to determine the dielectric function of nanoparticle dispersions that are used in optical biosensing applications. Camellia sinensis (green tea) leaf extract was used as a reducing agent to obtain nanoparticles. The gold nanoparticles were synthesized using different concentrations of green tea, which directly impact the particle size and refractive index. The experimental data from the absorption spectroscopy of colloidal solutions and the zeta potential measurements were used to determine the dielectric parameters of the gold nanoparticles. Three theoretical expressions proposed for the dielectric function have been used to estimate the measured absorption coefficient whose curves have a behavior that is quite similar to the ones obtained by UV-Vis spectrophotometry. The absolute error of the peak value of the absorption coefficient is less than 1.5% in the case of the theoretical expression that most accurately describes the dielectric function of the colloidal solution of gold nanoparticles.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 30 条
[1]  
Altavilla C., 2011, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives
[2]   Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix [J].
Battie, Y. ;
Resano-Garcia, A. ;
Chaoui, N. ;
Zhang, Y. ;
Naciri, A. En .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (04)
[3]   Biogenic synthesis of Au and Ag nanoparticles using Aqueous solutions of Black Tea leaf extracts [J].
Begum, Namin Ara ;
Mondal, Samiran ;
Basu, Saswati ;
Laskar, Rajibul A. ;
Mandal, Debabrata .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2009, 71 (01) :113-118
[4]   Beer-Lambert law [J].
Calloway, D .
JOURNAL OF CHEMICAL EDUCATION, 1997, 74 (07) :744-744
[5]   Gold nanorod-based localized surface plasmon resonance biosensors: A review [J].
Cao, Jie ;
Sun, Tong ;
Grattan, Kenneth T. V. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 :332-351
[6]  
Clogston JD, 2011, METHODS MOL BIOL, V697, P63, DOI 10.1007/978-1-60327-198-1_6
[7]   First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using Scabiosa atropurpurea subsp. maritima Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties [J].
Essghaier, Badiaa ;
Toukabri, Nourchene ;
Dridi, Rihab ;
Hannachi, Hedia ;
Limam, Ines ;
Mottola, Filomena ;
Mokni, Mourad ;
Zid, Mohamed Faouzi ;
Rocco, Lucia ;
Abdelkarim, Mohamed .
NANOMATERIALS, 2022, 12 (09)
[8]   Mie theory for light scattering by a spherical particle in an absorbing medium [J].
Fu, Q ;
Sun, WB .
APPLIED OPTICS, 2001, 40 (09) :1354-1361
[9]  
Harish K., 2018, BIOMEDICAL J SCI TEC, V4, P3765, DOI [10.26717/BJSTR.2018.04.0001011, DOI 10.26717/BJSTR.2018.04.0001011, 10.26717/BJSTR.2018.04.001011, DOI 10.26717/BJSTR.2018.04.001011]
[10]  
Ingle Jr J. D., 1988, Spectrochemical Analysis, V1st