Anticipating fluctuations of bigeye tuna in the Pacific Ocean from three-dimensional ocean biogeochemistry

被引:1
作者
Taboada, Fernando G. [1 ,2 ,7 ]
Park, Jong-Yeon [3 ]
Muhling, Barbara A. [4 ,5 ]
Tommasi, Desiree [4 ,5 ]
Tanaka, Kisei R. [1 ,6 ]
Rykaczewski, Ryan R. [6 ]
Stock, Charles A. [2 ]
Sarmiento, Jorge L. [1 ]
机构
[1] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA
[2] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA
[3] Jeonbuk Natl Univ, Dept Earth & Environm Sci, Jeonju Si, Jeonrabug Do, South Korea
[4] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA USA
[5] Natl Ocean & Atmospher Adm NOAA, Southwest Fisheries Sci Ctr SWFSC, San Diego, CA USA
[6] Natl Ocean & Atmospher Adm NOAA, Pacifc Isl Fisheries Sci Ctr PIFSC, Honolulu, HI USA
[7] Basque Res & Technol Alliance BRTA, AZTI Marine Res, Txatxarramendi Ugartea Z-G, Sukarrieta 48395, Spain
关键词
bigeye tuna; ecological forecast; ocean biogeochemistry; ocean deoxygenation; Thunnus obesus; LIVING MARINE RESOURCES; THUNNUS-OBESUS; VERTICAL MOVEMENTS; DATA ASSIMILATION; GLOBAL OCEAN; HABITAT; MODEL; POPULATIONS; MANAGEMENT; FISHERIES;
D O I
10.1111/1365-2664.14346
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Subseasonal to decadal ocean forecasting can make significant contributions to achieving effective management of living marine resources in a changing ocean. Most applications rely on indirect proxies, however, often measured at the ocean surface and lacking a direct mechanistic link to the dynamics of marine populations. Here, we take advantage of three-dimensional, dynamical reconstructions and forecasts of ocean biogeochemistry based on a global Earth system model to hindcast and assess the capacity to anticipate fluctuations in the dynamics of bigeye tuna (Thunnus obesus Lowe) in the Pacific Ocean during the last six decades. We reconstructed spatial patterns in catch per unit effort (CPUE) through the combination of physiological indices capturing both habitat preferences and physiological tolerance limits in bigeye tuna. Our analyses revealed a sequence of four distinct regimes characterized by changes in the zonal distribution and average CPUE of bigeye tuna in the Pacific Ocean. Habitat models accounting for basin-wide fluctuations in the thermal structure and oxygen concentration throughout the water column captured interannual fluctuations in CPUE and regime switches that models based solely on surface information were unable to reproduce. Decade-long forecast experiments further suggested that forecasts of three-dimensional biogeochemical information might enable anticipation of fluctuations in bigeye tuna several years ahead. Synthesis and applications. Together, our results reveal the impact of variability of biogeochemical conditions in the ocean interior on the dynamics of bigeye tuna on the Pacific Ocean, raising concerns about the future impact of ocean warming and deoxygenation. The results also lend support to incorporating subsurface biogeochemical information into ecological forecasts to implement efficient dynamic management strategies and promote the sustainable use of marine living resources.
引用
收藏
页码:463 / 479
页数:17
相关论文
共 113 条
[1]   Spatiotemporal variability in bigeye vertical distribution in the Pacific Ocean [J].
Abascal, F. J. ;
Peatman, T. ;
Leroy, B. ;
Nicol, S. ;
Schaefer, K. ;
Fuller, D. W. ;
Hampton, J. .
FISHERIES RESEARCH, 2018, 204 :371-379
[2]   Light penetration structures the deep acoustic scattering layers in the global ocean [J].
Aksnes, Dag L. ;
Rostad, Anders ;
Kaartvedt, Stein ;
Martinez, Udane ;
Duarte, Carlos M. ;
Irigoien, Xabier .
SCIENCE ADVANCES, 2017, 3 (05)
[3]  
[Anonymous], 2017, JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, DOI DOI 10.1111/NPH.12013
[4]  
ArreguinSanchez F, 1996, REV FISH BIOL FISHER, V6, P221
[5]   Global habitat preferences of commercially valuable tuna [J].
Arrizabalaga, Haritz ;
Dufour, Florence ;
Kell, Laurence ;
Merino, Gorka ;
Ibaibarriaga, Leire ;
Chust, Guillem ;
Irigoien, Xabier ;
Santiago, Josu ;
Murua, Hilario ;
Fraile, Igaratza ;
Chifflet, Marina ;
Goikoetxea, Nerea ;
Sagarminaga, Yolanda ;
Aumont, Olivier ;
Bopp, Laurent ;
Herrera, Miguel ;
Fromentin, Jean Marc ;
Bonhomeau, Sylvain .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2015, 113 :102-112
[6]  
Barange M., 2018, FAO FISHERIES AQUACU
[7]   Integration of temporal environmental variation by the marine plankton community [J].
Barton, Andrew D. ;
Taboada, Fernando Gonzalez ;
Atkinson, Angus ;
Widdicombe, Claire E. ;
Stock, Charles A. .
MARINE ECOLOGY PROGRESS SERIES, 2020, 647 :1-16
[8]   Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions [J].
Bentlage, Bastian ;
Peterson, A. Townsend ;
Barve, Narayani ;
Cartwright, Paulyn .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2013, 22 (08) :952-961
[9]   Sharing the water column: physiological mechanisms underlying species-specific habitat use in tunas [J].
Bernal, Diego ;
Brill, Richard W. ;
Dickson, Kathryn A. ;
Shiels, Holly A. .
REVIEWS IN FISH BIOLOGY AND FISHERIES, 2017, 27 (04) :843-880
[10]   Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability [J].
Bertrand, A ;
Josse, E ;
Bach, P ;
Gros, P ;
Dagorn, L .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2002, 59 (06) :1002-1013