On simple-injective modules

被引:2
作者
Alagoz, Yusuf [1 ]
Benli-Goral, Sinem [2 ]
Buyukasik, Engin [2 ]
机构
[1] Siirt Univ, Dept Math, Siirt, Turkey
[2] Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey
关键词
(Min) injective modules; simple-injective modules; Artinian rings; RINGS;
D O I
10.1142/S0219498823501384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a right module M, we prove that M is simple-injective if and only if M is min-N-injective for every cyclic right module N. The rings whose simple-injective right modules are injective are exactly the right Artinian rings. A right Noetherian ring is right Artinian if and only if every cyclic simple-injective right module is injective. The ring is QF if and only if simple-injective right modules are projective. For a commutative Noetherian ring R, we prove that every finitely generated simple-injective R-module is projective if and only if R = A x B, where A is QF and B is hereditary. An abelian group is simple-injective if and only if its torsion part is injective. We show that the notions of simple-injective, strongly simple-injective, soc-injective and strongly soc-injective coincide over the ring of integers.
引用
收藏
页数:12
相关论文
共 16 条
[1]   Poor modules with no proper poor direct summands [J].
Alizade, Rafail ;
Buyukasik, EngIn ;
Lopez-Permouth, Sergio R. ;
Yang, Liu .
JOURNAL OF ALGEBRA, 2018, 502 :24-44
[2]   Soc-injective rings and modules [J].
Amin, I ;
Yousif, M ;
Zeyada, N .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) :4229-4250
[3]  
Cartan Henri, 1956, Homological Algebra, pxv+390
[4]   DIRECT-SUM REPRESENTATIONS OF INJECTIVE MODULES [J].
FAITH, C ;
WALKER, EA .
JOURNAL OF ALGEBRA, 1967, 5 (02) :203-&
[5]  
Fuchs L, 2015, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-319-19422-6_1
[6]  
Goodearl K. R., 1976, Ring Theory, Non Singular Rings and Modules
[7]  
HARADA M, 1982, OSAKA J MATH, V19, P587
[8]  
HARADA M, 1992, OSAKA J MATH, V29, P435
[9]  
Lam T.Y., 1999, GRAD TEXT M, V189
[10]  
Mao LX, 2008, PUBL MATH-DEBRECEN, V72, P347