A new generalization of Fibonacci and Lucas type sedenions

被引:6
作者
Kizilates, Can [1 ]
Kirlak, Selihan [1 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Dept Math, TR-67100 Zonguldak, Turkey
关键词
Sedenion algebra; Horadam number; q-integer; Binet-Like formula; Exponential generating function; GENERATING-FUNCTIONS;
D O I
10.1080/09720529.2022.2036405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the q-integer, we introduce a new generalization of Fibonacci and Lucas type sedenions called q-Fibonacci and q-Lucas sedenions. We state that the special cases of these types of sedenions give the various sedenions whose components are defined by second order integer sequences. We also present some fundamental properties of these types of sedenions.
引用
收藏
页码:2217 / 2228
页数:12
相关论文
共 24 条
  • [1] Akkus I, 2019, KUWAIT J SCI, V46, P1
  • [2] Andrews G. E., 1999, SPECIAL FUNCTIONS
  • [3] [Anonymous], 2017, Math. Aeterna
  • [4] Bilgici G, 2017, J INTEGER SEQ, V20
  • [5] Catarino P., 2013, Int. J. Math. Anal., V7, P1877
  • [6] Catarino P., 2013, APPL MATH SCI, V7, P4867, DOI DOI 10.12988/AMS.2013.37379
  • [7] k-Pell, k-Pell-Lucas and modified k-Pell sedenions
    Catarino, Paula
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)
  • [8] Cawagas R. E., 2009, ARXIV09072047V3
  • [9] Cimen C, 2019, J SCI ARTS, P887
  • [10] On Jacobsthal and Jacobsthal-Lucas Octonions
    Cimen, Cennet Bolat
    Ipek, Ahmet
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)