Classification of Diabetic Retinopathy with Feature Fusion Network

被引:2
作者
Zhao Shuang [1 ]
Mu Ge [1 ]
Zhao Wenhua [2 ]
Ma Zhiqing [2 ]
机构
[1] Shandong Univ Tradit Chinese Med, Lab Management Off, Jinan 250355, Shandong, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
关键词
automatic classification; diabetic retinopathy; feature fusion network; dilated convolution; attention mechanism;
D O I
10.3788/LOP222415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Diabetic retinopathy is a serious and common complication of diabetes. Herein, we propose a new feature fusion network model to improve the accuracy of the diagnosis for the severity of diabetic retinopathy and provide a basis for its precise drug treatment. A lightweight network, EfficientNet-B0, was used to extract layer information from fundus images, and high-level elements were combined with three dilated convolutions with various dilation rates to obtain multiscale features. The multiscale channel attention module (MS-CAM) was introduced to weigh high- and bottom-level features, which were then fused to form final feature representations and thereby complete the classification of the diabetic retinopathy. Experimental results show the classification accuracy of the proposed model is 85. 25%; hence, the network is appropriate for practical applications. Furthermore, the model can play an auxiliary role for clinical diagnosis and can effectively prevent further deterioration in diabetic retinopathy.
引用
收藏
页数:7
相关论文
共 34 条
[1]  
Amalia R., 2021, J. Phys. Conf. Ser., V1722, DOI DOI 10.1088/1742-6596/1722/1/012010
[2]  
Amid E, 2019, Arxiv, DOI [arXiv:1906.03361, DOI 10.48550/ARXIV.1906.03361, 10.48550/ARXIV.1906.03361]
[3]   Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy [J].
Ansari, Prawej ;
Tabasumma, Noushin ;
Snigdha, Nayla Nuren ;
Siam, Nawfal Hasan ;
Panduru, Rachana V. N. R. S. ;
Azam, Shofiul ;
Hannan, J. M. A. ;
Abdel-Wahab, Yasser H. A. .
DIABETOLOGY, 2022, 3 (01) :159-175
[4]   Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy Severity Prediction [J].
Bodapati, Jyostna Devi ;
Naralasetti, Veeranjaneyulu ;
Shareef, Shaik Nagur ;
Hakak, Saqib ;
Bilal, Muhammad ;
Maddikunta, Praveen Kumar Reddy ;
Jo, Ohyun .
ELECTRONICS, 2020, 9 (06)
[5]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]  
Cuadros Jorge, 2009, J Diabetes Sci Technol, V3, P509
[9]   Attentional Feature Fusion [J].
Dai, Yimian ;
Gieseke, Fabian ;
Oehmcke, Stefan ;
Wu, Yiquan ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, :3559-3568
[10]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234