An Artificial Intelligence Analysis of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review

被引:4
作者
Di Costanzo, Assunta [1 ]
Spaccarotella, Carmen Anna Maria [2 ]
Esposito, Giovanni [2 ]
Indolfi, Ciro [1 ]
机构
[1] Magna Graecia Univ Catanzaro, Cardiovasc Res Ctr, Div Cardiol, I-88100 Catanzaro, Italy
[2] Univ Naples Federico II, Dept Adv Biomed Sci, Div Cardiol, I-80126 Naples, Italy
关键词
artificial intelligence; deep learning; convolutional neural networks; electrocardiogram; cardiovascular diseases; CONVOLUTIONAL NEURAL-NETWORK; AORTIC-VALVE STENOSIS; LEAD ECG SIGNALS; ATRIAL-FIBRILLATION; MYOCARDIAL-INFARCTION; HYPERTROPHIC CARDIOMYOPATHY; CLASSIFICATION; DYSFUNCTION; SMARTWATCH; COMMUNITY;
D O I
10.3390/jcm13041033
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) applied to cardiovascular disease (CVD) is enjoying great success in the field of scientific research. Electrocardiograms (ECGs) are the cornerstone form of examination in cardiology and are the most widely used diagnostic tool because they are widely available, inexpensive, and fast. Applications of AI to ECGs, especially deep learning (DL) methods using convolutional neural networks (CNNs), have been developed in many fields of cardiology in recent years. Deep learning methods provide valuable support for rapid ECG interpretation, demonstrating a diagnostic capability overlapping with specialists in the diagnosis of CVD by a classical analysis of macroscopic changes in the ECG trace. Through photoplethysmography, wearable devices can obtain single-derivative ECGs for the recognition of AI-diagnosed arrhythmias. In addition, CNNs have been developed that recognize no macroscopic electrocardiographic changes and can predict, from a 12-lead ECG, atrial fibrillation, even from sinus rhythm; left and right ventricular function; hypertrophic cardiomyopathy; acute coronary syndromes; or aortic stenosis. The fields of application are many, but numerous are the limitations, mainly associated with the reliability of the acquired data, an inability to verify black box processes, and medico-legal and ethical problems. The challenge of modern medicine is to recognize the limitations of AI and overcome them.
引用
收藏
页数:15
相关论文
共 81 条
[11]   Smartwatch Algorithm for Automated Detection of Atrial Fibrillation [J].
Bumgarner, Joseph M. ;
Lambert, Cameron T. ;
Hussein, Ayman A. ;
Cantillon, Daniel J. ;
Baranowski, Bryan ;
Wolski, Kathy ;
Lindsay, Bruce D. ;
Wazni, Oussama M. ;
Tarakji, Khaldoun G. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (21) :2381-2388
[12]   2023 ESC Guidelines for the management of acute coronary syndromes [J].
Byrne, Robert A. ;
Rossello, Xavier ;
Coughlan, J. J. ;
Barbato, Emanuele ;
Berry, Colin ;
Chieffo, Alaide ;
Claeys, Marc J. ;
Dan, Gheorghe-Andrei ;
Dweck, Marc R. ;
Galbraith, Mary ;
Gilard, Martine ;
Hinterbuchner, Lynne ;
Jankowska, Ewa A. ;
Juni, Peter ;
Kimura, Takeshi ;
Kunadian, Vijay ;
Leosdottir, Margret ;
Lorusso, Roberto ;
Pedretti, Roberto F. E. ;
Rigopoulos, Angelos G. ;
Gimenez, Maria Rubini ;
Thiele, Holger ;
Vranckx, Pascal ;
Wassmann, Sven ;
Wenger, Nanette Kass ;
Ibanez, Borja ;
ESC Sci Document Grp .
EUROPEAN HEART JOURNAL, 2023, 44 (38) :3720-3826
[13]   Quantifying deep neural network uncertainty for atrial fibrillation detection with limited labels [J].
Chen, Brian ;
Javadi, Golara ;
Hamilton, Alexander ;
Sibley, Stephanie ;
Laird, Philip ;
Abolmaesumi, Purang ;
Maslove, David ;
Mousavi, Parvin .
SCIENTIFIC REPORTS, 2022, 12 (01)
[14]   Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care [J].
Chen, Ke-Wei ;
Wang, Yu-Chen ;
Liu, Meng-Hsuan ;
Tsai, Being-Yuah ;
Wu, Mei-Yao ;
Hsieh, Po-Hsin ;
Wei, Jung-Ting ;
Shih, Edward S. C. ;
Shiao, Yi-Tzone ;
Hwang, Ming-Jing ;
Wu, Ya-Lun ;
Hsu, Kai-Cheng ;
Chang, Kuan-Cheng .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[15]   Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model [J].
Chen, Tsai-Min ;
Huang, Chih-Han ;
Shih, Edward S. C. ;
Hu, Yu-Feng ;
Hwang, Ming-Jing .
ISCIENCE, 2020, 23 (03)
[16]   Acute Myocardial Infarction Detection Using Deep Learning-Enabled Electrocardiograms [J].
Chen, Xiehui ;
Guo, Wenqin ;
Zhao, Lingyue ;
Huang, Weichao ;
Wang, Lili ;
Sun, Aimei ;
Li, Lang ;
Mo, Fangrui .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[17]   Artificial Intelligence-Electrocardiography to Predict Incident Atrial Fibrillation A Population-Based Study [J].
Christopoulos, Georgios ;
Graff-Radford, Jonathan ;
Lopez, Camden L. ;
Yao, Xiaoxi ;
Attia, Zachi, I ;
Rabinstein, Alejandro A. ;
Petersen, Ronald C. ;
Knopman, David S. ;
Mielke, Michelle M. ;
Kremers, Walter ;
Vemuri, Prashanthi ;
Siontis, Konstantinos C. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (12) :E009355
[18]   AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017 [J].
Clifford, Gari D. ;
Liu, Chengyu ;
Moody, Benjamin ;
Lehman, Li-Wei H. ;
Silva, Ikaro ;
Li, Qiao ;
Johnson, A. E. ;
Mark, Roger G. .
2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
[19]   Electrocardiogram screening for aortic valve stenosis using artificial intelligence [J].
Cohen-Shelly, Michal ;
Attia, Zachi, I ;
Friedman, Paul A. ;
Ito, Saki ;
Essayagh, Benjamin A. ;
Ko, Wei-Yin ;
Murphree, Dennis H. ;
Michelena, Hector, I ;
Enriquez-Sarano, Maurice ;
Carter, Rickey E. ;
Johnson, Patrick W. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Oh, Jae K. .
EUROPEAN HEART JOURNAL, 2021, 42 (30) :2885-+
[20]   Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals [J].
Dai, Hao ;
Hwang, Hsin-Ginn ;
Tseng, Vincent S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 203 (203)