An Artificial Intelligence Analysis of Electrocardiograms for the Clinical Diagnosis of Cardiovascular Diseases: A Narrative Review

被引:4
作者
Di Costanzo, Assunta [1 ]
Spaccarotella, Carmen Anna Maria [2 ]
Esposito, Giovanni [2 ]
Indolfi, Ciro [1 ]
机构
[1] Magna Graecia Univ Catanzaro, Cardiovasc Res Ctr, Div Cardiol, I-88100 Catanzaro, Italy
[2] Univ Naples Federico II, Dept Adv Biomed Sci, Div Cardiol, I-80126 Naples, Italy
关键词
artificial intelligence; deep learning; convolutional neural networks; electrocardiogram; cardiovascular diseases; CONVOLUTIONAL NEURAL-NETWORK; AORTIC-VALVE STENOSIS; LEAD ECG SIGNALS; ATRIAL-FIBRILLATION; MYOCARDIAL-INFARCTION; HYPERTROPHIC CARDIOMYOPATHY; CLASSIFICATION; DYSFUNCTION; SMARTWATCH; COMMUNITY;
D O I
10.3390/jcm13041033
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) applied to cardiovascular disease (CVD) is enjoying great success in the field of scientific research. Electrocardiograms (ECGs) are the cornerstone form of examination in cardiology and are the most widely used diagnostic tool because they are widely available, inexpensive, and fast. Applications of AI to ECGs, especially deep learning (DL) methods using convolutional neural networks (CNNs), have been developed in many fields of cardiology in recent years. Deep learning methods provide valuable support for rapid ECG interpretation, demonstrating a diagnostic capability overlapping with specialists in the diagnosis of CVD by a classical analysis of macroscopic changes in the ECG trace. Through photoplethysmography, wearable devices can obtain single-derivative ECGs for the recognition of AI-diagnosed arrhythmias. In addition, CNNs have been developed that recognize no macroscopic electrocardiographic changes and can predict, from a 12-lead ECG, atrial fibrillation, even from sinus rhythm; left and right ventricular function; hypertrophic cardiomyopathy; acute coronary syndromes; or aortic stenosis. The fields of application are many, but numerous are the limitations, mainly associated with the reliability of the acquired data, an inability to verify black box processes, and medico-legal and ethical problems. The challenge of modern medicine is to recognize the limitations of AI and overcome them.
引用
收藏
页数:15
相关论文
共 81 条
[1]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[2]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[3]  
Airhart S, 2018, Encyclopedia of Cardiovascular Research and Medicine, V145, P54, DOI [10.1016/B978-0-12-809657-4.10910-X, DOI 10.1016/B978-0-12-809657-4.10910-X]
[4]   2023 ESC Guidelines for the management of cardiomyopathies Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC) [J].
Arbelo, Elena ;
Protonotarios, Alexandros ;
Gimeno, Juan R. ;
Arbustini, Eloisa ;
Barriales-Villa, Roberto ;
Basso, Cristina ;
Bezzina, Connie R. ;
Biagini, Elena ;
Blom, Nico A. ;
de Boer, Rudolf A. ;
De Winter, Tim ;
Elliott, Perry M. ;
Flather, Marcus ;
Garcia-Pavia, Pablo ;
Haugaa, Kristina H. ;
Ingles, Jodie ;
Jurcut, Ruxandra Oana ;
Klaassen, Sabine ;
Limongelli, Giuseppe ;
Loeys, Bart ;
Mogensen, Jens ;
Olivotto, Iacopo ;
Pantazis, Antonis ;
Sharma, Sanjay ;
Van Tintelen, J. Peter ;
Ware, James S. ;
Kaski, Juan Pablo .
EUROPEAN HEART JOURNAL, 2023, 44 (37) :3503-3626
[5]   Application of artificial intelligence to the electrocardiogram [J].
Attia, Zachi, I ;
Harmon, David M. ;
Behr, Elijah R. ;
Friedman, Paul A. .
EUROPEAN HEART JOURNAL, 2021, 42 (46) :4717-+
[6]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[7]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[8]   Novel Bloodless Potassium Determination Using a Signal-Processed Single-Lead ECG [J].
Attia, Zachi I. ;
DeSimone, Christopher V. ;
Dillon, John J. ;
Sapir, Yehu ;
Somers, Virend K. ;
Dugan, Jennifer L. ;
Bruce, Charles J. ;
Ackerman, Michael J. ;
Asirvatham, Samuel J. ;
Striemer, Bryan L. ;
Bukartyk, Jan ;
Scott, Christopher G. ;
Bennet, Kevin E. ;
Ladewig, Dorothy J. ;
Gilles, Emily J. ;
Sadot, Dan ;
Geva, Amir B. ;
Friedman, Paul A. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (01)
[9]   Classification of myocardial infarction with multi-lead ECG signals and deep CNN [J].
Baloglu, Ulas Baran ;
Talo, Muhammed ;
Yildirim, Ozal ;
Tan, Ru San ;
Acharya, U. Rajendra .
PATTERN RECOGNITION LETTERS, 2019, 122 :23-30
[10]   Misdiagnosis of atrial fibrillation and its clinical consequences [J].
Bogun, F ;
Anh, D ;
Kalahasty, G ;
Wissner, E ;
Serhal, CB ;
Bazzi, R ;
Weaver, WD ;
Schuger, C .
AMERICAN JOURNAL OF MEDICINE, 2004, 117 (09) :636-642