Atomic Defect Quantification by Lateral Force Microscopy

被引:6
作者
Yang, Yucheng [1 ]
Xu, Kaikui [1 ]
Holtzman, Luke N. [2 ]
Yang, Kristyna [1 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [4 ]
Hone, James [5 ]
Barmak, Katayun [2 ]
Rosenberger, Matthew R. [1 ]
机构
[1] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba 3050044, Japan
[4] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba 3050044, Japan
[5] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Lateral Force Microscopy; Atomic Defects; HexagonalBoron Nitride; Transition Metal Dichalcogenides; Atomic Force Microscopy; Atomic Defect CharacterizationMethods; Friction; SCALE FRICTION; RESOLUTION; GRAPHITE;
D O I
10.1021/acsnano.3c07405
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomic defects in two-dimensional (2D) materials impact electronic and optoelectronic properties, such as doping and single photon emission. An understanding of defect-property relationships is essential for optimizing material performance. However, progress in understanding these critical relationships is hindered by a lack of straightforward approaches for accurate, precise, and reliable defect quantification on the nanoscale, especially for insulating materials. Here, we demonstrate that lateral force microscopy (LFM), a mechanical technique, can observe atomic defects in semiconducting and insulating 2D materials under ambient conditions. We first improve the sensitivity of LFM through consideration of cantilever mechanics. With the improved sensitivity, we use LFM to locate atomic-scale point defects on the surface of bulk MoSe2. By directly comparing LFM and conductive atomic force microscopy (CAFM) measurements on bulk MoSe2, we demonstrate that point defects observed with LFM are atomic defects in the crystal. As a mechanical technique, LFM does not require a conductive pathway, which allows defect characterization on insulating materials, such as hexagonal boron nitride (hBN). We demonstrate the ability to observe intrinsic defects in hBN and defects introduced by annealing. Our demonstration of LFM as a mechanical defect characterization technique applicable to both conductive and insulating 2D materials will enable routine defect-property determination and accelerate materials research.
引用
收藏
页码:6887 / 6895
页数:9
相关论文
共 55 条
[1]   Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride [J].
Al-Juboori, Ali ;
Zeng, Helen Zhi Jie ;
Nguyen, Minh Anh Phan ;
Ai, Xiaoyu ;
Laucht, Arne ;
Solntsev, Alexander ;
Toth, Milos ;
Malaney, Robert ;
Aharonovich, Igor .
ADVANCED QUANTUM TECHNOLOGIES, 2023, 6 (09)
[2]   Direct Visualization and Effects of Atomic-Scale Defects on the Optoelectronic Properties of Hexagonal Boron Nitride [J].
Ares, Pablo ;
Santos, Hernan ;
Lazic, Snezana ;
Gibaja, Carlos ;
Torres, Inigo ;
Pinilla, Sergio ;
Gomez-Herrero, Julio ;
van der Meulen, Herko P. ;
Garcia-Gonzalez, Pablo ;
Zamora, Felix .
ADVANCED ELECTRONIC MATERIALS, 2021, 7 (07)
[3]   Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts [J].
Bampoulis, Pantelis ;
van Bremen, Rik ;
Yao, Qirong ;
Poelsema, Bene ;
Zandvliet, Harold J. W. ;
Sotthewes, Kai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :19278-19286
[4]   Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides [J].
Barja, Sara ;
Refaely-Abramson, Sivan ;
Schuler, Bruno ;
Qiu, Diana Y. ;
Pulkin, Artem ;
Wickenburg, Sebastian ;
Ryu, Hyejin ;
Ugeda, Miguel M. ;
Kastl, Christoph ;
Chen, Christopher ;
Hwang, Choongyu ;
Schwartzberg, Adam ;
Aloni, Shaul ;
Mo, Sung-Kwan ;
Ogletree, D. Frank ;
Crommie, Michael F. ;
Yazyev, Oleg, V ;
Louie, Steven G. ;
Neaton, Jeffrey B. ;
Weber-Bargioni, Alexander .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change [J].
Bartosik, Miroslav ;
Kormos, Lukas ;
Flajsman, Lukas ;
Kalousek, Radek ;
Mach, Jindrich ;
Liskova, Zuzana ;
Nezval, David ;
Svarc, Vojtech ;
Samoril, Tomas ;
Sikola, Tomas .
JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (03) :610-619
[6]   Single-spin resonance in a van der Waals embedded paramagnetic defect [J].
Chejanovsky, Nathan ;
Mukherjee, Amlan ;
Geng, Jianpei ;
Chen, Yu-Chen ;
Kim, Youngwook ;
Denisenko, Andrej ;
Finkler, Amit ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Dasari, Durga Bhaktavatsala Rao ;
Auburger, Philipp ;
Gali, Adam ;
Smet, Jurgen H. ;
Wrachtrup, Joerg .
NATURE MATERIALS, 2021, 20 (08) :1079-+
[7]   Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride [J].
Comtet, Jean ;
Glushkov, Evgenii ;
Navikas, Vytautas ;
Feng, Jiandong ;
Babenko, Vitally ;
Hofmann, Stephan ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Radenovic, Aleksandra .
NANO LETTERS, 2019, 19 (04) :2516-2523
[8]   Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy [J].
de Graaf, Sytze ;
Ahmadi, Majid ;
Lazic, Ivan ;
Bosch, Eric G. T. ;
Kooi, Bart J. .
NANOSCALE, 2021, 13 (48) :20683-20691
[9]   Radiation damage and defect dynamics in 2D WS2: a low-voltage scanning transmission electron microscopy study [J].
de Graaf, Sytze ;
Kooi, Bart J. .
2D MATERIALS, 2022, 9 (01)
[10]   Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control [J].
Edelberg, Drew ;
Rhodes, Daniel ;
Kerelsky, Alexander ;
Kim, Bumho ;
Wang, Jue ;
Zangiabadi, Amirali ;
Kim, Chanul ;
Abhinandan, Antony ;
Ardelean, Jenny ;
Scully, Micheal ;
Scullion, Declan ;
Embon, Lior ;
Zu, Rui ;
Santos, Elton J. G. ;
Balicas, Luis ;
Marianetti, Chris ;
Barmak, Katayun ;
Zhu, Xiaoyang ;
Hone, James ;
Pasupathy, Abhay N. .
NANO LETTERS, 2019, 19 (07) :4371-4379