Quadratic Neural Networks for Solving Inverse Problems

被引:0
作者
Frischauf, Leon [1 ]
Scherzer, Otmar [1 ,2 ,3 ]
Shi, Cong [1 ,2 ,4 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[3] Christian Doppler Lab Math Modeling & Simulat Next, Vienna, Austria
[4] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Generalized neural network functions; inverse problems; MULTILAYER FEEDFORWARD NETWORKS; UNIVERSAL APPROXIMATION;
D O I
10.1080/01630563.2024.2316580
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the solution of inverse problems with neural network ansatz functions with generalized decision functions. The relevant observation for this work is that such functions can approximate typical test cases, such as the Shepp-Logan phantom, better, than standard neural networks. Moreover, we show that the convergence analysis of numerical methods for solving inverse problems with shallow generalized neural network functions leads to more intuitive convergence conditions, than for deep affine linear neural networks.
引用
收藏
页码:112 / 135
页数:24
相关论文
共 37 条
[11]   Universal approximation with quadratic deep networks [J].
Fan, Fenglei ;
Xiong, Jinjun ;
Wang, Ge .
NEURAL NETWORKS, 2020, 124 :383-392
[12]  
Gelenbe E., 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), P166, DOI 10.1109/NNSP.1999.788135
[13]   AN INTRODUCTION TO WAVELETS [J].
GRAPS, A .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1995, 2 (02) :50-61
[14]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[15]   STOCHASTIC CHOICE OF BASIS FUNCTIONS IN ADAPTIVE FUNCTION APPROXIMATION AND THE FUNCTIONAL-LINK NET [J].
IGELNIK, B ;
PAO, YH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (06) :1320-1329
[16]  
KELLEY J, 1955, GEN TOPOLOGY
[17]   Neural Network Independence Properties with Applications to Adaptive Control [J].
Lamperski, Andrew .
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, :3365-3370
[18]   MULTILAYER FEEDFORWARD NETWORKS WITH A NONPOLYNOMIAL ACTIVATION FUNCTION CAN APPROXIMATE ANY FUNCTION [J].
LESHNO, M ;
LIN, VY ;
PINKUS, A ;
SCHOCKEN, S .
NEURAL NETWORKS, 1993, 6 (06) :861-867
[19]  
Louis A., 1998, WAVELETS THEORIE ANW
[20]  
Manita OA, 2022, J MACH LEARN RES, V23