Quadratic Neural Networks for Solving Inverse Problems

被引:0
作者
Frischauf, Leon [1 ]
Scherzer, Otmar [1 ,2 ,3 ]
Shi, Cong [1 ,2 ,4 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
[3] Christian Doppler Lab Math Modeling & Simulat Next, Vienna, Austria
[4] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Generalized neural network functions; inverse problems; MULTILAYER FEEDFORWARD NETWORKS; UNIVERSAL APPROXIMATION;
D O I
10.1080/01630563.2024.2316580
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the solution of inverse problems with neural network ansatz functions with generalized decision functions. The relevant observation for this work is that such functions can approximate typical test cases, such as the Shepp-Logan phantom, better, than standard neural networks. Moreover, we show that the convergence analysis of numerical methods for solving inverse problems with shallow generalized neural network functions leads to more intuitive convergence conditions, than for deep affine linear neural networks.
引用
收藏
页码:112 / 135
页数:24
相关论文
共 37 条
[1]  
[Anonymous], 2000, Learning with Recurrent Neural Networks
[2]   Approximation and learning by greedy algorithms [J].
Barron, Andrew R. ;
Cohen, Albert ;
Dahmen, Wolfgang ;
DeVore, Ronald A. .
ANNALS OF STATISTICS, 2008, 36 (01) :64-94
[3]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[4]  
Buhmann Martin D, 2003, C MO AP C M, V12, DOI 10.1017/CBO9780511543241
[5]  
Chui C. K, 1992, An Introduction to Wavelets
[6]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[7]  
DAUBECHIES I, 1992, 10 LECT WAVELETS, DOI DOI 10.1137/1.9781611970104
[8]  
Deng D., 2009, HARMONIC ANAL SPACES, DOI DOI 10.1007/978-3-540-88745-4
[9]  
Deuflhard P., 1991, NUMERICAL ANAL 1 COU
[10]  
Dugundji J, 1978, TOPOLOGY