Detection and Elimination of Senescent Cells with a Self-Assembled Senescence-Associated β-Galactosidase-Activatable Nanophotosensitizer

被引:7
|
作者
Chu, Jacky C. H. [1 ]
Xiong, Junlong [1 ,2 ]
Wong, Clarence T. T. [1 ,3 ]
Wang, Shuai [1 ]
Tam, Dick Yan [1 ]
Garcia-Fernandez, Alba [4 ,5 ,6 ]
Martinez-Manez, Ramon [4 ,5 ,6 ,7 ]
Ng, Dennis K. P. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[2] Affiliated Luohu Hosp Shenzhen Univ, Affiliated Luohu Hosp, Dept Pharm, Shenzhen 518001, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Peoples R China
[4] Univ Politecn Valencia, Univ Valencia, Inst Interuniv Invest Reconocimiento Mol & Desarro, Valencia 46022, Spain
[5] Inst Salud Carlos III, CIBER Bioingn Biomat & Nanomed, Madrid 28029, Spain
[6] Univ Politecn Valencia, Ctr Invest Principe Felipe, Unidad Mixta UPV CIPF Invest Mecanismos Enfermedad, Valencia 46012, Spain
[7] Univ Politecn Valencia, Unidad Mixta Invest Nanomed & Sensores, Inst Invest Sanitaria La Fe IIS La Fe, Valencia 46026, Spain
关键词
PHOTODYNAMIC THERAPY; CELLULAR SENESCENCE; FLUORESCENT-PROBE; PHOTOSENSITIZER; PHTHALOCYANINES; NANOPARTICLES; STRATEGIES; ABLATION;
D O I
10.1021/acs.jmedchem.3c01306
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Senescent cells have become an important therapeutic target for many age-related dysfunctions and diseases. We report herein a novel nanophotosensitizing system that is responsive to the senescence-associated beta-galactosidase (beta-gal) for selective detection and elimination of these cells. It involves a dimeric zinc(II) phthalocyanine linked to a beta-galactose unit via a self-immolative linker. This compound can self-assemble in aqueous media, forming stable nanoscale particles in which the phthalocyanine units are stacked and self-quenched for fluorescence emission and singlet oxygen production. Upon internalization into senescent HeLa cells, these nanoparticles interact with the overproduced senescence-associated beta-gal inside the cells to trigger the disassembly process through enzymatic cleavage of the glycosidic bonds, followed by self-immolation to release the photoactive monomeric phthalocyanine units. These senescent cells can then be lit up with fluorescence and eliminated through the photodynamic action upon light irradiation with a half-maximal inhibitory concentration of 0.06 mu M.
引用
收藏
页码:234 / 244
页数:11
相关论文
共 50 条
  • [21] Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors
    Misawa, Tomoka
    Tanaka, Yoko
    Okada, Ryo
    Takahashi, Akiko
    GERIATRICS & GERONTOLOGY INTERNATIONAL, 2020, 20 (06) : 539 - 546
  • [22] A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues
    Saul, Dominik
    Kosinsky, Robyn Laura
    Atkinson, Elizabeth J.
    Doolittle, Madison L.
    Zhang, Xu
    LeBrasseur, Nathan K.
    Pignolo, Robert J.
    Robbins, Paul D.
    Niedernhofer, Laura J.
    Ikeno, Yuji
    Jurk, Diana
    Passos, Joao F.
    Hickson, LaTonya J.
    Xue, Ailing
    Monroe, David G.
    Tchkonia, Tamara
    Kirkland, James L.
    Farr, Joshua N.
    Khosla, Sundeep
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Senescence-associated β-galactosidase reflects an increase in lysosomal mass with replicative age in human endothelial cells
    Kurz, DJ
    Decary, S
    Hong, Y
    Erusalimsky, JD
    MECHANISMS OF AGEING AND DEVELOPMENT, 2002, 123 (04) : 447 - 448
  • [24] KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype
    Zhang, Boyi
    Long, Qilai
    Wu, Shanshan
    Xu, Qixia
    Song, Shuling
    Han, Liu
    Qian, Min
    Ren, Xiaohui
    Liu, Hanxin
    Jiang, Jing
    Guo, Jianming
    Zhang, Xiaoling
    Chang, Xing
    Fu, Qiang
    Lam, Eric W-F
    Campisi, Judith
    Kirkland, James L.
    Sun, Yu
    NATURE AGING, 2021, 1 (05): : 454 - +
  • [25] Elimination of Senescent Cells Targeting Senescence Associated Glycoprotein (sagp) Improved the Atherosclerosis and Diabetes
    Suda, Masayoshi
    Shimizu, Ippei
    Katsuumi, Goro
    Yoshida, Yohko
    Hayashi, Yuka
    Minamino, Tohru
    CIRCULATION, 2020, 142
  • [26] A new SASP gene set identifies senescent cells and predicts novel senescence-associated pathways in bone
    Saul, Dominik
    Kosinsky, Robyn
    Monroe, David
    Doolittle, Madison
    Atkinson, Elizabeth
    Farr, Joshua
    Khosla, Sundeep
    JOURNAL OF BONE AND MINERAL RESEARCH, 2022, 37 : 292 - 292
  • [27] An Optimized Protocol for Histochemical Detection of Senescence-associated Beta-galactosidase Activity in Cryopreserved Liver Tissue
    Jannone, Giulia
    Rozzi, Milena
    Najimi, Mustapha
    Decottignies, Anabelle
    Sokal, Etienne M.
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2020, 68 (04) : 269 - 278
  • [28] Heterochromatin Represses Senescence-associated Secretory Phenotype Gene Expression in Senescent Retinal Pigment Epithelial Cells
    Qi, Ruili
    Gong, Lili
    Ke, Qin
    Zhu, Xingfei
    Liu, Wei
    Li, David W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [29] Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells
    Kurz, DJ
    Decary, S
    Hong, Y
    Erusalimsky, JD
    JOURNAL OF CELL SCIENCE, 2000, 113 (20) : 3613 - 3622
  • [30] Senescence-associated β-galactosidase activity and other markers of senescence are present in human peripheral blood mononuclear cells during healthy aging
    Dewald, Hannah K.
    Martinez-Zamudio, Ricardo Ivan
    Vasilopoulos, Themistoklis
    Herbig, Utz
    Fitzgerald-Bocarsly, Patricia
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):