Parametric optimization and modeling of continuous electrocoagulation process for the removal of fluoride: Response surface methodology and machine learning approach

被引:1
|
作者
Indurkar, Pankaj D. [1 ,2 ]
Raj, Savan K. [1 ]
Kulshrestha, Vaibhav [1 ,2 ]
机构
[1] CSIR Cent Salt & Marine Chem Res Inst, Membrane Sci & Separat Technol Div, GB Marg, Bhavnagar 364002, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Electrocoagulation; Fluoride; Modeling; Central composite design; Machine learning; DRINKING-WATER; GROUNDWATER; REACTOR;
D O I
10.1007/s11696-023-03229-w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The main objective of this study was to assess the continuous electrocoagulation process effectiveness for removing fluoride from potable water. The effect of different parameters like applied potential, electrode spacing, and feed flow rate was optimized for the continuous removal of fluoride from potable water. Response surface methodology (RSM) was used to examine the impact on essential operational factors such as voltage, concentration, and pH for fluoride removal as a response. The results demonstrate that all the parameters had a significant effect on removal efficiency. The quadratic model accurately predicted the optimal parameters for maximal fluoride removal efficiency with the association of desirability 1.0, which was discovered to be voltage 2.38 V, feed concentration 5.52 mg/L, and pH 6.45. According to the analysis of variance, R2 of the proposed quadratic model is higher (0.9877). Moreover, the difference between the predicted R2 of 0.9258 and the adjusted R2 of 0.9767 was less than 0.2. The model adequacy was also studied based on residual plot, perturbation plot, and box-cox plot. The RSM was best modeling techniques use to predict data than the multilayer perceptron and linear regression due to high accuracy. Finally, the generated flocs were characterized by scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, and Fourier transform infrared spectroscopy instrumental techniques. The outcomes demonstrate that a newly designed continuous electrocoagulation process is a promising alternative for the removal of fluoride from potable water.
引用
收藏
页码:1887 / 1896
页数:10
相关论文
共 50 条
  • [21] Nickel (II) removal from real electroplating wastewater in an electrocoagulation reactor: parametric optimization by response surface methodology
    Mahtab, Md Azam
    Bari, Asma
    Khan, Salman
    Ahteshaam, Mohd
    Khan, Saif Ullah
    Farooqi, Izharul Haq
    WATER SCIENCE AND TECHNOLOGY, 2024, 90 (08) : 2266 - 2275
  • [22] Removal of Cefixime from aqueous solutions via proxy electrocoagulation: modeling and optimization by response surface methodology
    Mahdi Asadi-Ghalhari
    Roqiyeh Mostafaloo
    Nasim Ghafouri
    Amin Kishipour
    Saideh Usefi
    Oussama Baaloudj
    Reaction Kinetics, Mechanisms and Catalysis, 2021, 134 : 459 - 471
  • [23] Removal of Cefixime from aqueous solutions via proxy electrocoagulation: modeling and optimization by response surface methodology
    Asadi-Ghalhari, Mahdi
    Mostafaloo, Roqiyeh
    Ghafouri, Nasim
    Kishipour, Amin
    Usefi, Saideh
    Baaloudj, Oussama
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 134 (01) : 459 - 471
  • [24] Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology
    Kobya, M.
    Demirbas, E.
    Gebologlu, U.
    Oncel, M. S.
    Yildirim, Y.
    DESALINATION AND WATER TREATMENT, 2013, 51 (34-36) : 6676 - 6687
  • [25] Optimization of COD Removal from Pharmaceutical Wastewater by Electrocoagulation process using Response Surface Methodology (RSM)
    Najeeb, Riham Gh.
    Abbar, Ali H.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2022, 65 (01): : 619 - 631
  • [26] Techno-economic evaluation of simultaneous arsenic and fluoride removal from synthetic groundwater by electrocoagulation process: optimization through response surface methodology
    Thakur, Lokendra Singh
    Mondal, Prasenjit
    DESALINATION AND WATER TREATMENT, 2016, 57 (59) : 28847 - 28863
  • [27] Modeling and optimization of process variables for HCl gas removal by response surface methodology
    Bal, Manisha
    Biswas, Subrata
    Behera, Sushanta K.
    Meikap, B. C.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2019, 54 (04): : 359 - 366
  • [28] Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology
    Ebba, Million
    Asaithambi, Perumal
    Alemayehu, Esayas
    HELIYON, 2022, 8 (05)
  • [29] Modeling and optimization of a continuous electrocoagulation process using an artificial intelligence approach
    Graca, Nuno S.
    Ribeiro, Ana M.
    Rodrigues, Alirio E.
    WATER SUPPLY, 2022, 22 (01) : 643 - 658
  • [30] The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology
    Oelmez, Tugba
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) : 1371 - 1378