Global existence, asymptotic stability and blow up of solutions for a nonlinear viscoelastic plate equation involving (p(x); q(x))-Laplacian operator

被引:5
|
作者
Shahrouzi, Mohammad [1 ]
Ferreira, Jorge [2 ]
Tahamtani, Faramarz [3 ]
机构
[1] Jahrom Univ, Dept Math, POB 74137-66171, Jahrom, Iran
[2] Fed Fluminense Univ, Dept Exact Sci, Rio De Janeiro, Brazil
[3] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2023年 / 42卷 / 1-2期
关键词
(p(x); q(x))-Laplacian; variable exponent; global existence; asymptotic stability; blow up; VARIABLE-EXPONENT; SOBOLEV EMBEDDINGS; Q)-LAPLACIAN; (P; SPACES;
D O I
10.4171/ZAA/1722
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study aims at investigating the global existence, asymptotic stability and blow up of solutions for a nonlinear viscoelastic fourth-order (p(x), q(x))-Laplacian equation with variable -exponent nonlinearities. First, we prove the global existence of solutions, and next, we show that the solutions are asymptotically stable if initial data p(x) and q(x) are in the appropriate range. Moreover, under suitable conditions on initial data, we prove that there exists a finite time in which some solutions blow up with positive as well as negative initial energies.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 50 条