Regulation Mechanism on A Bilayer Li2O-Rich Interface between Lithium Metal and Garnet-Type Solid Electrolytes

被引:2
作者
Jiang, Haoyang [1 ]
Liu, Junqing [1 ]
Tang, Bin [2 ]
Yang, Zhendong [1 ]
Liang, Xinghui [1 ]
Yu, Xinyu [3 ]
Gao, Yirong [3 ]
Wei, Jinping [1 ]
Zhou, Zhen [1 ,2 ]
机构
[1] Nankai Univ, Sch Mat Sci & Engn, Inst New Energy Mat Chem, Renewable Energy Convers & Storage Ctr ReCast,Mini, Tianjin 300350, Peoples R China
[2] Zhengzhou Univ, Sch Chem Engn, Interdisciplinary Res Ctr Sustainable Energy Sci &, Zhengzhou 450001, Peoples R China
[3] Shanghai Jiao Tong Univ Joint Inst Shanghai Jiao T, Univ Michigan, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic void evolution; interfacial Li+ transportation; Li2O-rich interface; lithium metal batteries; solid electrolytes; DENDRITE FORMATION; STATE ELECTROLYTE; CONDUCTIVITY; TEMPERATURE; RESISTANCE; BATTERIES; KINETICS; FAILURE; LAYER;
D O I
10.1002/adfm.202306399
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical implementation of garnet-type solid electrolytes, such as Li6.4La3Zr1.4Ta0.6O12 (LLZTO), faces the significant challenge of Li dendrites. Though artificial interfacial strategies are effective in dendrite suppression, further investigation is needed to understand the mechanism of homogeneous Li deposition and its practicability under real-world conditions. Herein, a bilayer interface is constructed to address these issues. Such a bilayer interface consists of one conformal Li2O-rich layer, generated by rubbing LLZTO pellets inside molten Li with low-dose In2O3, and another Li2O layer deposited through atomic layer deposition (ALD). The regulatory effect of the initial Li2O-rich layer on achieving uniform Li deposition is explored, and the critical current density is enhanced to 2.4 mA cm(-2). However, simple interfacial strategy is insufficient to prevent anodic degradation for cycling at room temperature without stack pressure, leading to increased current leakage and directly reducing Li+ within the electrolyte. After insulating it with a second ALD-Li2O layer that minimally hampers ionic conduction, the Li/Li symmetric cells achieve long cycling life exceeding 1000 h at 0.5 mA cm(-2) and maintain stable operation even at 2 mA cm(-2). This work provides valuable insights for interfacial strategies towards practical solid-state batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries
    Sharifi, Omid
    Golmohammad, Mohammad
    Soozandeh, Mozhde
    Mehranjani, Alireza Soleimany
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (09) : 2433 - 2444
  • [22] The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12
    Krauskopf, Thorben
    Mogwitz, Boris
    Hartmann, Hannah
    Singh, Dheeraj K.
    Zeier, Wolfgang G.
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2020, 10 (27)
  • [23] Exploration of Metal Alloys as Zero-Resistance Interfacial Modification Layers for Garnet-Type Solid Electrolytes
    Cui, Jiang
    Kim, Jong Heon
    Yao, Shanshan
    Guerfi, Abdelbast
    Paolella, Andrea
    Goodenough, John B.
    Khani, Hadi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
  • [24] Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries
    Song, Shidong
    Chen, Butian
    Ruan, Yanli
    Sun, Jian
    Yu, Limei
    Wang, Yan
    Thokchom, Joykumar
    ELECTROCHIMICA ACTA, 2018, 270 : 501 - 508
  • [25] Effect of Zr4+ on Lithium-Ion Conductivity of Garnet-Type Li5+xLa3(Nb2-xZrx)O12 Solid Electrolytes
    Reis, Shirley
    Grosso, Robson
    Kosctiuk, Juliane
    Franchetti, Marianne
    Oliveira, Francisca
    Souza, Adler
    Gonin, Cyrille
    Freitas, Heverson
    Monteiro, Robson
    Parreira, Luanna
    Berton, Marcos
    BATTERIES-BASEL, 2023, 9 (02):
  • [26] Local Li+ Framework Regulation of a Garnet-Type Solid-State Electrolyte
    Sun, Furong
    Yang, Yubo
    Zhao, Shu
    Wang, Yongtao
    Tang, Mingxue
    Huang, Qingzhen
    Ren, Yang
    Su, Heng
    Wang, Boya
    Zhao, Ning
    Guo, Xiangxin
    Yu, Haijun
    ACS ENERGY LETTERS, 2022, 7 (08) : 2835 - 2844
  • [27] Li2Se: A High Ionic Conductivity Interface to Inhibit the Growth of Lithium Dendrites in Garnet Solid Electrolytes
    Yang, Wu
    Tang, Shijun
    Yang, Xuerui
    Zheng, Xuefan
    Wu, Yuqi
    Zheng, Chenxi
    Chen, Guiwei
    Gong, Zhengliang
    Yang, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (45) : 50710 - 50717
  • [28] Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries
    Guo, Sijie
    Sun, Yonggang
    Cao, Anmin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 329 - 342
  • [29] Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12 (x=0.25) solid electrolytes
    Cao Yang
    Li Yi-Qiu
    Guo Xiang-Xin
    CHINESE PHYSICS B, 2013, 22 (07)
  • [30] Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries
    Lee, Kyeongsu
    Han, Sangwook
    Lee, Jeongmin
    Lee, Sunyoung
    Kim, Jongmin
    Ko, Youngmin
    Kim, Sewon
    Yoon, Kyungho
    Song, Jun-Hyuk
    Noh, Joo Hyeon
    Kang, Kisuk
    ACS ENERGY LETTERS, 2022, 7 (01) : 381 - 389