Regulation Mechanism on A Bilayer Li2O-Rich Interface between Lithium Metal and Garnet-Type Solid Electrolytes

被引:2
作者
Jiang, Haoyang [1 ]
Liu, Junqing [1 ]
Tang, Bin [2 ]
Yang, Zhendong [1 ]
Liang, Xinghui [1 ]
Yu, Xinyu [3 ]
Gao, Yirong [3 ]
Wei, Jinping [1 ]
Zhou, Zhen [1 ,2 ]
机构
[1] Nankai Univ, Sch Mat Sci & Engn, Inst New Energy Mat Chem, Renewable Energy Convers & Storage Ctr ReCast,Mini, Tianjin 300350, Peoples R China
[2] Zhengzhou Univ, Sch Chem Engn, Interdisciplinary Res Ctr Sustainable Energy Sci &, Zhengzhou 450001, Peoples R China
[3] Shanghai Jiao Tong Univ Joint Inst Shanghai Jiao T, Univ Michigan, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic void evolution; interfacial Li+ transportation; Li2O-rich interface; lithium metal batteries; solid electrolytes; DENDRITE FORMATION; STATE ELECTROLYTE; CONDUCTIVITY; TEMPERATURE; RESISTANCE; BATTERIES; KINETICS; FAILURE; LAYER;
D O I
10.1002/adfm.202306399
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical implementation of garnet-type solid electrolytes, such as Li6.4La3Zr1.4Ta0.6O12 (LLZTO), faces the significant challenge of Li dendrites. Though artificial interfacial strategies are effective in dendrite suppression, further investigation is needed to understand the mechanism of homogeneous Li deposition and its practicability under real-world conditions. Herein, a bilayer interface is constructed to address these issues. Such a bilayer interface consists of one conformal Li2O-rich layer, generated by rubbing LLZTO pellets inside molten Li with low-dose In2O3, and another Li2O layer deposited through atomic layer deposition (ALD). The regulatory effect of the initial Li2O-rich layer on achieving uniform Li deposition is explored, and the critical current density is enhanced to 2.4 mA cm(-2). However, simple interfacial strategy is insufficient to prevent anodic degradation for cycling at room temperature without stack pressure, leading to increased current leakage and directly reducing Li+ within the electrolyte. After insulating it with a second ALD-Li2O layer that minimally hampers ionic conduction, the Li/Li symmetric cells achieve long cycling life exceeding 1000 h at 0.5 mA cm(-2) and maintain stable operation even at 2 mA cm(-2). This work provides valuable insights for interfacial strategies towards practical solid-state batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes
    Krauskopf, Thorben
    Dippel, Rabea
    Hartmann, Hannah
    Peppler, Klaus
    Mogwitz, Boris
    Richter, Felix H.
    Zeier, Wolfgang G.
    Janek, Juergen
    JOULE, 2019, 3 (08) : 2030 - 2049
  • [2] Enhanced lithium ion transport in garnet-type solid state electrolytes
    Cheng, Lei
    Hou, Huaming
    Lux, Simon
    Kostecki, Robert
    Davis, Ryan
    Zorba, Vassilia
    Mehta, Apurva
    Doeff, Marca
    JOURNAL OF ELECTROCERAMICS, 2017, 38 (2-4) : 168 - 175
  • [3] In Situ and Low-Cost Improvement of the Lithium Anode Interface in Garnet-Type Solid-State Electrolytes
    Liao, Yu-Kai
    Liu, Ru-Shi
    Yao, Sung-Ting
    Hu, Shu-Fen
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (49) : 57828 - 57834
  • [4] Enhanced lithium ion transport in garnet-type solid state electrolytes
    Lei Cheng
    Huaming Hou
    Simon Lux
    Robert Kostecki
    Ryan Davis
    Vassilia Zorba
    Apurva Mehta
    Marca Doeff
    Journal of Electroceramics, 2017, 38 : 168 - 175
  • [5] The Role of Interlayer Chemistry in Li-Metal Growth through a Garnet-Type Solid Electrolyte
    Kim, Sewon
    Jung, Changhoon
    Kim, Hyunseok
    Thomas-Alyea, Karen E.
    Yoon, Gabin
    Kim, Byunghoon
    Badding, Michael E.
    Song, Zhen
    Chang, JaeMyung
    Kim, Jusik
    Im, Dongmin
    Kang, Kisuk
    ADVANCED ENERGY MATERIALS, 2020, 10 (12)
  • [6] Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites
    Wang, Dawei
    Zhong, Guiming
    Pang, Wei Kong
    Guo, Zaiping
    Li, Yixiao
    McDonald, Matthew J.
    Fu, Riqiang
    Mi, Jin-Xiao
    Yang, Yong
    CHEMISTRY OF MATERIALS, 2015, 27 (19) : 6650 - 6659
  • [7] The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes
    Saran, Sevda
    Ozkendir, Osman Murat
    Atav, Ulfet
    TURKISH JOURNAL OF PHYSICS, 2021, 45 (03): : 148 - 158
  • [8] Garnet-Type Lithium Metal Fluorides: A Potential Solid Electrolyte for Solid-State Batteries
    Umeshbabu, Ediga
    Maddukuri, Satyanarayana
    Aurbach, Doron
    Fichtner, Maximilian
    Munnangi, Anji Reddy
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (01): : 51 - 57
  • [9] Interface modification in solid-state lithium batteries based on garnet-type electrolytes with high ionic conductivity
    Luo, Yali
    Feng, Weiwei
    Meng, Zijie
    Wang, Yuanjun
    Jiang, Xue
    Xue, Zihan
    ELECTROCHIMICA ACTA, 2021, 397
  • [10] Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer
    Jiang, Wen
    Dong, Lingling
    Liu, Shuanghui
    Ai, Bing
    Zhao, Shuangshuang
    Zhang, Weimin
    Pan, Kefeng
    Zhang, Lipeng
    NANOMATERIALS, 2022, 12 (12)