Influence of LiNO3 on the Lithium Metal Deposition Behavior in Carbonate-Based Liquid Electrolytes and on the Electrochemical Performance in Zero-Excess Lithium Metal Batteries

被引:16
作者
Stuckenberg, Silvan [1 ]
Bela, Marlena Maria [1 ]
Lechtenfeld, Christian-Timo [1 ]
Mense, Maximilian [1 ]
Kuepers, Verena [1 ]
Ingber, Tjark Thorben Klaus [1 ]
Winter, Martin [1 ,2 ]
Stan, Marian Cristian [1 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
extended cycle life; lithium deposits; lithium-metal batteries; lithium nitrate; zero-excess lithium metal batteries; ANODE; ION; SALT; INTERPHASE; MECHANISM; NITRATE;
D O I
10.1002/smll.202305203
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Continuous lithium (Li) depletion shadows the increase in energy density and safety properties promised by zero-excess lithium metal batteries (ZELMBs). Guiding the Li deposits toward more homogeneous and denser lithium morphology results in improved electrochemical performance. Herein, a lithium nitrate (LiNO3) enriched separator that improves the morphology of the Li deposits and facilitates the formation of an inorganic-rich solid-electrolyte interphase (SEI) resulting in an extended cycle life in Li||Li-cells as well as an increase of the Coulombic efficiency in Cu||Li-cells is reported. Using a LiNi0.6Co0.2Mn0.2O2 positive electrode in NCM622||Cu-cells, a carbonate-based electrolyte, and a LiNO3 enriched separator, an extension of the cycle life by more than 50 cycles with a moderate capacity fading compared to the unmodified separator is obtained. The relative constant level of LiNO3 in the electrolyte, maintained by the LiNO3 enriched separator throughout the cycling process stems at the origin of the improved performance. Ion chromatography measurements carried out at different cycles support the proposed mechanism of a slow and constant release of LiNO3 from the separator. The results indicate that the strategy of using a LiNO3 enriched separator instead of LiNO3 as a sacrificial electrolyte additive can improve the performance of ZELMBs further by maintaining a compact and thus stable SEI layer on Li deposits.
引用
收藏
页数:10
相关论文
共 60 条
  • [1] Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes
    Adams, Brian D.
    Carino, Emily V.
    Connell, Justin G.
    Han, Kee Sung
    Cao, Ruiguo
    Chen, Junzheng
    Zheng, Jianming
    Li, Qiuyan
    Mueller, Karl T.
    Henderson, Wesley A.
    Zhang, Ji-Guang
    [J]. NANO ENERGY, 2017, 40 : 607 - 617
  • [2] Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries
    Assegie, Addisu Alemayehu
    Chung, Cheng-Chu
    Tsai, Meng-Che
    Su, Wei-Nien
    Chen, Chun-Wei
    Hwang, Bing-Joe
    [J]. NANOSCALE, 2019, 11 (06) : 2710 - 2720
  • [4] Optimising the concentration of LiNO3 additive in C4mpyr-TFSI electrolyte-based Li-S battery
    Barghamadi, Marzieh
    Best, Adam S.
    Hollenkamp, Anthony F.
    Mahon, Peter
    Musameh, Mustafa
    Ruther, Thomas
    [J]. ELECTROCHIMICA ACTA, 2016, 222 : 257 - 263
  • [5] Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium sulfur battery
    Barghamadi, Marzieh
    Best, Adam S.
    Bhatt, Anand I.
    Hollenkamp, Anthony F.
    Mahon, Peter J.
    Musameh, Mustafa
    Ruether, Thomas
    [J]. JOURNAL OF POWER SOURCES, 2015, 295 : 212 - 220
  • [6] Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries
    Beyene, Tamene Tadesse
    Bezabh, Hailemariam Kassa
    Weret, Misganaw Adigo
    Hagos, Teklay Mezgebe
    Huang, Chen-Jui
    Wang, Chia-Hsin
    Su, Wei-Nien
    Dai, Hongjie
    Hwang, Bing-Joe
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1501 - A1509
  • [7] FAST IONIC-CONDUCTIVITY IN LITHIUM NITRIDE
    BOUKAMP, BA
    HUGGINS, RA
    [J]. MATERIALS RESEARCH BULLETIN, 1978, 13 (01) : 23 - 32
  • [8] Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries
    Chen, Hao
    Yang, Yufei
    Boyle, David T.
    Jeong, You Kyeong
    Xu, Rong
    de Vasconcelos, Luize Scalco
    Huang, Zhuojun
    Wang, Hansen
    Wang, Hongxia
    Huang, Wenxiao
    Li, Huiqiao
    Wang, Jiangyan
    Gu, Hanke
    Matsumoto, Ryuhei
    Motohashi, Kazunari
    Nakayama, Yuri
    Zhao, Kejie
    Cui, Yi
    [J]. NATURE ENERGY, 2021, 6 (08) : 790 - 798
  • [9] Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes
    Chen, Jianyu
    Zhao, Jin
    Lei, Linna
    Li, Pan
    Chen, Jun
    Zhang, Yu
    Wang, Yizhou
    Ma, Yanwen
    Wang, Dan
    [J]. NANO LETTERS, 2020, 20 (05) : 3403 - 3410
  • [10] Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries
    Cheng, Lei
    Curtiss, Larry A.
    Zavadil, Kevin R.
    Gewirth, Andrew A.
    Shao, Yuyan
    Gallagher, Kevin G.
    [J]. ACS ENERGY LETTERS, 2016, 1 (03): : 503 - 509