Higher genus FJRW invariants of a Fermat cubic

被引:0
作者
Li, Jun [1 ]
Shen, Yefeng
Zhou, Jie
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
GROMOV-WITTEN INVARIANTS; GLOBAL MIRROR SYMMETRY; LG/CY CORRESPONDENCE; QUANTUM COHOMOLOGY; GEOMETRY; THEOREM; CURVES; PROOF; SPACE; GW;
D O I
10.2140/gt.2023.27.1845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We reconstruct all-genus Fan-Jarvis-Ruan-Witten invariants of a Fermat cubic Landau-Ginzburg space (x13 +x23 +x33W [C3/& mu;3] ! C) from genus-one primary invariants, using tautological relations and axioms of cohomological field theories. The genus-one primary invariants satisfy a Chazy equation by the Belorousski- Pandharipande relation. They are completely determined by a single genus-one invariant, which can be obtained from cosection localization and intersection theory on moduli of three-spin curves. We solve an all-genus Landau-Ginzburg/Calabi-Yau correspondence conjecture for the Fermat cubic Landau-Ginzburg space using Cayley transformation on quasi modular forms. This transformation relates two nonsemisimple CohFT theories: the Fan-Jarvis-Ruan-Witten theory of the Fermat cubic polynomial and the Gromov- Witten theory of the Fermat cubic curve. As a consequence, Fan-Jarvis-Ruan-Witten invariants at any genus can be computed using Gromov-Witten invariants of the elliptic curve. They also satisfy nice structures, including holomorphic anomaly equations and Virasoro constraints.
引用
收藏
页码:1845 / 1890
页数:47
相关论文
共 58 条
[1]   Givental-Type Reconstruction at a Nonsemisimple Point [J].
Basalaev, Alexey ;
Priddis, Nathan .
MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (02) :333-369
[2]  
Belorousski Pavel., 2000, ANN SCUOLA NORM-SCI, V29, P171
[3]   The character of the infinite wedge representation [J].
Bloch, S ;
Okounkov, A .
ADVANCES IN MATHEMATICS, 2000, 149 (01) :1-60
[4]  
Chang HL, 2021, COMMUN ANAL GEOM, V29, P1749
[5]  
Chang HL, 2022, J DIFFER GEOM, V120, P251, DOI 10.4310/jdg/1645207466
[6]   Mixed-Spin-P fields of Fermat polynomials [J].
Chang, Huai-Liang ;
Li, Jun ;
Li, Wei-Ping ;
LiU, Melissa Chiu-Chu .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2019, 7 (03) :319-364
[7]  
Chang HL, 2015, J DIFFER GEOM, V100, P251
[8]   Witten's top Chern class via cosection localization [J].
Chang, Huai-Liang ;
Li, Jun ;
Li, Wei-Ping .
INVENTIONES MATHEMATICAE, 2015, 200 (03) :1015-1063
[9]   LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE, GLOBAL MIRROR SYMMETRY AND ORLOV EQUIVALENCE [J].
Chiodo, Alessandro ;
Iritani, Hiroshi ;
Ruan, Yongbin .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (119) :127-216
[10]   A GLOBAL MIRROR SYMMETRY FRAMEWORK FOR THE LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE [J].
Chiodo, Alessandro ;
Ruan, Yongbin .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) :2803-2864