Sharp endpoint estimates for Schrodinger groups on Hardy spaces

被引:2
作者
Chen, Peng [1 ]
Duong, Xuan Thinh [2 ]
Li, Ji [2 ]
Yan, Lixin [3 ]
机构
[1] Sun Yat sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[3] Sun Yat sen Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
基金
澳大利亚研究理事会;
关键词
Sharp endpoint estimate; Schrodinger group; Davies-Gaffney estimate; Hardy space; Space of homogeneous type; SPECTRAL MULTIPLIERS; ELLIPTIC-OPERATORS; BOUNDS; MANIFOLDS; EQUATION; KERNELS;
D O I
10.1016/j.jde.2023.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a non-negative self-adjoint operator acting on L2(X) where X is a space of homogeneous type with a dimension n. Suppose that the heat kernel of L satisfies the Davies-Gaffney estimates of order m > 2. Let HL1 (X)be the Hardy space associated with L. In this paper we obtain the sharp endpoint estimate for the Schrodinger group eitL associated with L such that (I +L)-n/2eitL f L1(X)+ (I+L)-n/2eitL fHL1(X)1+|t|)n/2IIfIIHL1(X), te R for some constant C = C(n, m) > 0 independent of t. We further apply our result to provide the sharp estimate for Schrodinger group of the Kohn Laplacian ❑b on polynomial model domains treated by Nagel- Stein [41], where e-t ❑b satisfies only the second order Davies-Gaffney estimates. Moreover, when the heat kernel of L satisfies a Gaussian upper bound, by a duality and interpolation argument, it gives a new proof of a recent result of [13] for sharp endpoint Lp-Sobolev bound for eitL: (I + L)-seitLf Lp(X)1+|t|)sIIfIILp(X), teR, s>n ⠃⠃ 1 2- 1 ⠃⠃ p for every 1 < p < oo, which extends the classical results due to Miyachi ([39,40]) for the Laplacian on the Euclidean space Rn.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by /4 .0/).
引用
收藏
页码:660 / 690
页数:31
相关论文
共 49 条
[1]   OSCILLATING MULTIPLIERS ON LIE-GROUPS AND RIEMANNIAN-MANIFOLDS [J].
ALEXOPOULOS, G .
TOHOKU MATHEMATICAL JOURNAL, 1994, 46 (04) :457-468
[2]  
[Anonymous], 1970, Ann. Seuola Norm. Sup. Pisa
[3]  
[Anonymous], 1986, P CTR MATH ANAL AUST
[4]  
Auscher P., 2005, Boundedness of Banach space valued singular integral operators and Hardy spaces
[5]   Calderon reproducing formulas and applications to Hardy spaces [J].
Auscher, Pascal ;
McIntosh, Alan ;
Morris, Andrew J. .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (03) :865-900
[6]  
Blunck S, 2005, J OPERAT THEOR, V53, P351
[7]  
Blunck S, 2003, REV MAT IBEROAM, V19, P919
[9]   Heat Kernels, Smoothness Estimates, and Exponential Decay [J].
Boggess, Albert ;
Raich, Andrew .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (01) :180-224
[10]   CAUCHY-PROBLEM FOR SYSTEMS IN LP AND LP ALPHA [J].
BRENNER, P .
ARKIV FOR MATEMATIK, 1973, 11 (01) :75-101