On the minimum blocking semioval in PG(2, 11)

被引:2
作者
Dover, Jeremy M. [1 ]
机构
[1] Dover Networks LLC, 9802 Diversified Lane, Ellicott City, MD 21042 USA
关键词
D O I
10.1007/s00022-023-00686-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A blocking semioval is a set of points in a projective plane that is both a blocking set (i.e., every line meets the set, but the set contains no line) and a semioval (i.e., there is a unique tangent line at each point). The smallest size of a blocking semioval is known for all finite projective planes of order less than 11; we investigate the situation in PG(2, 11).
引用
收藏
页数:14
相关论文
共 13 条
[1]   On the Structure of Semiovals of Small Size [J].
Bartoli, Daniele .
JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (12) :525-536
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Csajbok B., 2014, THESIS U BASILICATA
[4]   A minimum blocking semioval in PG(2, 9) [J].
Dover, Jeremy M. ;
Mellinger, Keith E. ;
Wantz, Kenneth L. .
JOURNAL OF GEOMETRY, 2016, 107 (01) :119-123
[5]  
Dover JM, 2012, AUSTRALAS J COMB, V52, P269
[6]   A lower bound on blocking semiovals [J].
Dover, JM .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (05) :571-577
[7]  
Dover JM., 2000, J GEOM, V69, P58, DOI [10.1007/BF01237474, DOI 10.1007/BF01237474]
[8]  
Google, Google OR-Tools
[9]   On the spectrum of the sizes of semiovals in PG(2, q), q odd [J].
Gyoergy Kiss ;
Marcugini, Stefano ;
Pambianco, Fernanda .
DISCRETE MATHEMATICS, 2010, 310 (22) :3188-3193
[10]  
Héger T, 2012, ELECTRON J COMB, V19