Oxidization-Temperature-Triggered Rapid Preparation of Large-Area Single-Crystal Cu(111) Foil

被引:14
作者
Chen, Heng [1 ,2 ]
Liu, Xiaoting [1 ,2 ,3 ]
Huang, Yongfeng [4 ,5 ,6 ]
Li, Guangliang [2 ]
Yu, Feng [1 ,2 ]
Xiong, Feng [7 ]
Zhang, Mengqi [2 ]
Sun, Luzhao [1 ,2 ,3 ]
Yang, Qian [1 ,2 ]
Jia, Kaicheng [1 ,2 ]
Zou, Ruqiang [7 ]
Li, Huanxin [8 ]
Meng, Sheng [4 ,5 ,6 ,9 ]
Lin, Li [2 ,7 ]
Zhang, Jincan [1 ,2 ,3 ,8 ]
Peng, Hailin [1 ,2 ]
Liu, Zhongfan [1 ,2 ,3 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing Sci & Engn Ctr Nanocarbons,Ctr Nanochem, Beijing 100871, Peoples R China
[2] Beijing Graphene Inst, Beijing 100095, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[5] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[6] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[7] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[8] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[9] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene growth; oxidization; single-crystal Cu(111); temperature-triggered stategies; GRAPHENE; GROWTH; COPPER; CU;
D O I
10.1002/adma.202209755
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The controlled preparation of single-crystal Cu(111) is intensively investigated owing to the superior properties of Cu(111) and its advantages in synthesizing high-quality 2D materials, especially graphene. However, the accessibility of large-area single-crystal Cu(111) is still hindered by time-consuming, complicated, and high-cost preparation methods. Here, the oxidization-temperature-triggered rapid preparation of large-area single-crystal Cu(111) in which an area up to 320 cm(2) is prepared within 60 min, and where low-temperature oxidization of polycrystalline Cu foil surface plays a vital role, is reported. A mechanism is proposed, by which the thin CuxO layer transforms to a Cu(111) seed layer on the surface of Cu to induce the formation of a large-area Cu(111) foil, which is supported by both experimental data and molecular dynamics simulation results. In addition, a large-size high-quality graphene film is synthesized on the single-crystal Cu(111) foil surface and the graphene/Cu(111) composites exhibit enhanced thermal conductivity and ductility compared to their polycrystalline counterpart. This work, therefore, not only provides a new avenue toward the monocrystallinity of Cu with specific planes but also contributes to improving the mass production of high-quality 2D materials.
引用
收藏
页数:8
相关论文
共 38 条
[1]   An exploration on the use of in-house synthesized reduced few layer graphene particles as a reinforcement during sono-electroplating of Cu matrix composite films [J].
Behera, Akhya Kumar ;
Chandran, Ramkumar ;
Sarkar, Smarajit ;
Mallik, Archana .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
[2]   Polycrystalline Graphene with Single Crystalline Electronic Structure [J].
Brown, Lola ;
Lochocki, Edward B. ;
Avila, Jose ;
Kim, Cheol-Joo ;
Ogawa, Yui ;
Havener, Robin W. ;
Kim, Dong-Ki ;
Monkman, Eric J. ;
Shai, Daniel E. ;
Wei, Haofei I. ;
Levendorf, Mark P. ;
Asensio, Maria ;
Shen, Kyle M. ;
Park, Jiwoong .
NANO LETTERS, 2014, 14 (10) :5706-5711
[3]   Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene [J].
Burton, Oliver J. ;
Massabuau, Fabien C-P. ;
Veigang-Radulescu, Vlad-Petru ;
Brennan, Barry ;
Pollard, Andrew J. ;
Hofmann, Stephan .
ACS NANO, 2020, 14 (10) :13593-13601
[4]   Ultrahigh Electrical Conductivity of Graphene Embedded in Metals [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Yang, Li ;
Li, Shuaishuai ;
Xie, Yiqun ;
Guo, Qiang ;
Li, Zhiqiong ;
Adams, Horst ;
Gu, Jiajun ;
Fan, Tongxiang ;
Zhang, Xiaohui ;
Zhang, Di .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
[5]   Recent Progress on Two-Dimensional Materials [J].
Chang, Cheng ;
Chen, Wei ;
Chen, Ye ;
Chen, Yonghua ;
Chen, Yu ;
Ding, Feng ;
Fan, Chunhai ;
Fan, Hong Jin ;
Fan, Zhanxi ;
Gong, Cheng ;
Gong, Yongji ;
He, Qiyuan ;
Hong, Xun ;
Hu, Sheng ;
Hu, Weida ;
Huang, Wei ;
Huang, Yuan ;
Ji, Wei ;
Li, Dehui ;
Li, Lain-Jong ;
Li, Qiang ;
Lin, Li ;
Ling, Chongyi ;
Liu, Minghua ;
Liu, Nan ;
Liu, Zhuang ;
Loh, Kian Ping ;
Ma, Jianmin ;
Miao, Feng ;
Peng, Hailin ;
Shao, Mingfei ;
Song, Li ;
Su, Shao ;
Sun, Shuo ;
Tan, Chaoliang ;
Tang, Zhiyong ;
Wang, Dingsheng ;
Wang, Huan ;
Wang, Jinlan ;
Wang, Xin ;
Wang, Xinran ;
Wee, Andrew T. S. ;
Wei, Zhongming ;
Wu, Yuen ;
Wu, Zhong-Shuai ;
Xiong, Jie ;
Xiong, Qihua ;
Xu, Weigao ;
Yin, Peng ;
Zeng, Haibo .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (12)
[6]   Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) [J].
Chen, Tse-An ;
Chuu, Chih-Piao ;
Tseng, Chien-Chih ;
Wen, Chao-Kai ;
Wong, H. -S. Philip ;
Pan, Shuangyuan ;
Li, Rongtan ;
Chao, Tzu-Ang ;
Chueh, Wei-Chen ;
Zhang, Yanfeng ;
Fu, Qiang ;
Yakobson, Boris I. ;
Chang, Wen-Hao ;
Li, Lain-Jong .
NATURE, 2020, 579 (7798) :219-+
[7]   Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges [J].
Clair, A. ;
Foucault, M. ;
Calonne, O. ;
Lacroute, Y. ;
Markey, L. ;
Salazar, M. ;
Vignal, V. ;
Finot, E. .
ACTA MATERIALIA, 2011, 59 (08) :3116-3123
[8]   SEMIEMPIRICAL, QUANTUM-MECHANICAL CALCULATION OF HYDROGEN EMBRITTLEMENT IN METALS [J].
DAW, MS ;
BASKES, MI .
PHYSICAL REVIEW LETTERS, 1983, 50 (17) :1285-1288
[9]   Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates [J].
Deng, Bing ;
Pang, Zhenqian ;
Chen, Shulin ;
Li, Xin ;
Meng, Caixia ;
Li, Jiayu ;
Liu, Mengxi ;
Wu, Juanxia ;
Qi, Yue ;
Dang, Wenhui ;
Yang, Hao ;
Zhang, Yanfeng ;
Zhang, Jin ;
kang, Ning ;
Xu, Hongqi ;
Fu, Qiang ;
Qiu, Xiaohui ;
Gao, Peng ;
Wei, Yujie ;
Liu, Zhongfan ;
Peng, Hailin .
ACS NANO, 2017, 11 (12) :12337-12345
[10]   Cooperative Island Growth of Large-Area Single-Crystal Graphene on Copper Using Chemical Vapor Deposition [J].
Eres, Gyula ;
Regmi, Murari ;
Rouleau, Christopher M. ;
Chen, Jihua ;
Ivanov, Ilia N. ;
Puretzky, Alexander A. ;
Geohegare, David B. .
ACS NANO, 2014, 8 (06) :5657-5669