Enhancement mechanisms of spherical UFA on CO2 capture of waste slag

被引:9
|
作者
Zhao, Zhongzhong [1 ]
Liu, Wenhuan [1 ,2 ]
Jiang, Yiwen [1 ]
Li, Hui [1 ,2 ]
机构
[1] Xian Univ Architecture & Technol, Coll Mat Sci & Engn, Xian 710055, Shaanxi, Peoples R China
[2] Shaaxi Ecol Cement & Concrete Engn Technol Res Ctr, Xian 710055, Shaanxi, Peoples R China
关键词
CO2; capture; Mineralization; UFA; Enhancement mechanisms; CARBON-DIOXIDE; MINERAL CARBONATION; FLY-ASH; SEQUESTRATION; EMISSIONS;
D O I
10.1016/j.energy.2023.126720
中图分类号
O414.1 [热力学];
学科分类号
摘要
At present, the rising level of carbon dioxide (CO2) in the atmosphere has become a global concern, which urges researchers to find possible solutions to reduce or capture CO2 emissions. Mineralization is an important method for reducing CO2 emissions. In this study, the investigation provided an important opportunity to advance the understanding of the improving mechanism of spherical ultrafine fly ash (UFA) on the CO2 mineralization of waste slag (WS). The results show that adding UFA could significantly improve the mineralization efficiency (E), with an increased rate was 25.04%. UFA can effectively reduce CaCO3 covered on the surface of WS, resulting in more Ca2+, OH could be released from WS. XRD, FTIR, TG, and SEM-EDS analysis revealed the surface of the UFA powder serves as another ideal ectopic growth matrix for the production of CaCO3. A mechanism model of UFA improving WS mineralization was proposed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent
    Veetil, Sanoop Kumar Puthiya
    Rebane, Kaarel
    Yoruk, Can Rustu
    Lopp, Margus
    Trikkel, Andres
    Hitch, Michael
    ENERGY, 2021, 221
  • [42] CO2 mineralization of carbide slag for the production of light calcium carbonates
    Zhang, Tongyang
    Chu, Guanrun
    Lyu, Junlin
    Cao, Yongda
    Xu, Wentao
    Ma, Kui
    Song, Lei
    Yue, Hairong
    Liang, Bin
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 43 : 86 - 98
  • [43] Interpretation and Prediction of the CO2 Sequestration of Steel Slag by Machine Learning
    He, Bingyang
    Zhu, Xingyu
    Cang, Zhizhi
    Liu, Yang
    Lei, Yuxin
    Chen, Zhaohou
    Wang, Yanlin
    Zheng, Yongchao
    Cang, Daqiang
    Zhang, Lingling
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (46) : 17940 - 17949
  • [44] Electric swing adsorption as emerging CO2 capture technique
    Grande, Carlos A.
    Ribeiro, Rui P. P. L.
    Oliveira, Eduardo L. G.
    Rodrigues, Alirio E.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1219 - 1225
  • [45] Development of adsorbents for CO2 capture from waste materials: a review
    Olivares-Marin, M.
    Maroto-Valer, M.
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2012, 2 (01): : 20 - 35
  • [46] A study on the CO2 capture and attrition performance of construction and demolition waste
    Cai, Jianjun
    Wang, Shuzhong
    Xiao, Zhongzheng
    FUEL, 2018, 222 : 232 - 242
  • [47] Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture
    Sun, Nannan
    Sun, Chenggong
    Liu, Hao
    Liu, Jingjing
    Stevens, Lee
    Drage, Trevor
    Snape, Colin E.
    Li, Kaixi
    Wei, Wei
    Sun, Yuhan
    FUEL, 2013, 113 : 854 - 862
  • [48] CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag
    Zhiguo Sun
    Run Feng
    Li Zhang
    Hongyong Xie
    Research on Chemical Intermediates, 2018, 44 : 3613 - 3627
  • [49] Extra CO2 capture and storage by carbonation of biomass ashes
    Vassilev, Stanislav V.
    Vassileva, Christina G.
    ENERGY CONVERSION AND MANAGEMENT, 2020, 204
  • [50] Integrated Process of Monoethanolamine-Based CO2 Absorption and CO2 Mineralization with SFGD Slag: Process Simulation and Life-Cycle Assessment of CO2 Emission
    Yan, Zhi
    Wang, Yan
    Yue, Hairong
    Liu, Changjun
    Zhong, Shan
    Ma, Kui
    Liao, Wenjie
    Tang, Siyang
    Liang, Bin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (24) : 8238 - 8248