Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas

被引:9
作者
Huang, Junyang [1 ]
Hu, Shu [1 ]
Kos, Dean [1 ]
Xiong, Yuling [1 ]
Jakob, Lukas A. [1 ]
Sanchez-Iglesias, Ana [2 ,3 ]
Guo, Chenyang [1 ]
Liz-Marzan, Luis M. [2 ,4 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, NanoPhoton Ctr, Dept Phys, Cavendish Lab, JJ Thompson Ave, Cambridge CB3 0HE, England
[2] C biomaGUNE, CIC biomaGUNE, Paseo Miramon 194, Donostia San Sebastian 20014, Spain
[3] Univ Basque Country, CSIC, Ctr Fis Mat, Manuel Lardizabal Ibilbidea 5, Donostia San Sebastian 20018, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao 43009, Spain
基金
欧洲研究理事会;
关键词
plasmonics; nanoantenna; quantumdot; photocurrent; electroluminescence; Stark shift; POLARIZABILITY; LASERS; CDSE;
D O I
10.1021/acsnano.3c10092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability. These QD nanojunctions exhibit robust photoresponse characteristics, with plasmonically enhanced photocurrent spectra matching the QD solution absorption. We demonstrate electroluminescence from individual plasmonic nanoantennas, extending the device lifetime beyond 40 min by utilizing a 3 nm electron-blocking polymer layer. In addition, we reveal a giant voltage-dependent redshift of up to 62 meV due to the quantum-confined Stark effect and determine the exciton polarizability of the CdSe QD monolayer to be 4 x 10(-5) meV/(kV/cm)(2). These developments provide a foundation for accessing scalable quantum light sources and high-speed, tunable optoelectronic systems operating under ambient conditions.
引用
收藏
页码:3323 / 3330
页数:8
相关论文
共 49 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[2]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/NPHOTON.2014.228, 10.1038/nphoton.2014.228]
[3]   Extreme nanophotonics from ultrathin metallic gaps [J].
Baumberg, Jeremy J. ;
Aizpurua, Javier ;
Mikkelsen, Maiken H. ;
Smith, David R. .
NATURE MATERIALS, 2019, 18 (07) :668-678
[4]   Nanooptics of Molecular-Shunted Plasmonic Nanojunctions [J].
Benz, Felix ;
Tserkezis, Christos ;
Herrmann, Lars O. ;
de Nijs, Bart ;
Sanders, Alan ;
Sigle, Daniel O. ;
Pukenas, Laurynas ;
Evans, Stephen D. ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
NANO LETTERS, 2015, 15 (01) :669-674
[5]   Quantum dot plasmonics: from weak to strong coupling [J].
Bitton, Ora ;
Gupta, Satyendra Nath ;
Haran, Gilad .
NANOPHOTONICS, 2019, 8 (04) :559-575
[6]   Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J].
Dong, Angang ;
Chen, Jun ;
Vora, Patrick M. ;
Kikkawa, James M. ;
Murray, Christopher B. .
NATURE, 2010, 466 (7305) :474-477
[7]   Fingerprinting the Hidden Facets of Plasmonic Nanocavities [J].
Elliott, Eoin ;
Bedingfield, Kalun ;
Huang, Junyang ;
Hu, Shu ;
de Nijs, Bart ;
Demetriadou, Angela ;
Baumberg, Jeremy J. .
ACS PHOTONICS, 2022, 9 (08) :2643-2651
[8]   Quantum-confined stark effect in single CdSe nanocrystallite quantum dots [J].
Empedocles, SA ;
Bawendi, MG .
SCIENCE, 1997, 278 (5346) :2114-2117
[9]   Giant Stark effect in quantum dots at liquid/liquid interfaces: A new option for tunable optical filters [J].
Flatte, M. E. ;
Kornyshev, A. A. ;
Urbakh, M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) :18212-18214
[10]   Near-field strong coupling of single quantum dots [J].
Gross, Heiko ;
Hamm, Joachim M. ;
Tufarelli, Tommaso ;
Hess, Ortwin ;
Hecht, Bert .
SCIENCE ADVANCES, 2018, 4 (03)