Increased Accuracy of Genomic Prediction Using Preselected SNPs from GWAS with Imputed Whole-Genome Sequence Data in Pigs

被引:6
作者
Liu, Yiyi [1 ,2 ]
Zhang, Yuling [1 ,2 ]
Zhou, Fuchen [1 ,2 ]
Yao, Zekai [1 ,2 ]
Zhan, Yuexin [1 ,2 ]
Fan, Zhenfei [1 ,2 ]
Meng, Xianglun [1 ,2 ]
Zhang, Zebin [1 ,2 ]
Liu, Langqing [1 ,2 ]
Yang, Jie [1 ,2 ]
Wu, Zhenfang [1 ,2 ,3 ]
Cai, Gengyuan [1 ,2 ,3 ]
Zheng, Enqin [1 ,2 ]
机构
[1] South China Agr Univ, Natl Engn Res Ctr Breeding Swine Ind, Coll Anim Sci, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Guangdong Prov Key Lab Agroanim Genom & Mol Breedi, Guangzhou 510642, Peoples R China
[3] Guangdong Zhongxin Breeding Technol Co Ltd, Guangzhou 510642, Peoples R China
来源
ANIMALS | 2023年 / 13卷 / 24期
关键词
pigs; GS; accuracy; imputed WGS data; genome-wide association study; SNP preselection; RELIABILITY; TRAITS;
D O I
10.3390/ani13243871
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Simple Summary By integrating prior biological information into genomic selection methods using appropriate models, it is possible to improve prediction accuracy for complex traits. In this context, we conducted a comparative assessment of two genomic prediction models, namely, genomic best linear unbiased prediction and genomic feature best linear unbiased prediction. The accuracy of these models in predicting the growth traits of backfat thickness and loin muscle area was evaluated. Our results revealed that the genomic feature best linear unbiased prediction model can effectively integrate prior information into the model, which is superior to the genomic best linear unbiased prediction model in some cases. These findings provide valuable ideas for enhancing the genomic prediction accuracy of growth traits in pigs.Abstract Enhancing the accuracy of genomic prediction is a key goal in genomic selection (GS) research. Integrating prior biological information into GS methods using appropriate models can improve prediction accuracy for complex traits. Genome-wide association study (GWAS) is widely utilized to identify potential candidate loci associated with complex traits in livestock and poultry, offering essential genomic insights. In this study, a GWAS was conducted on 685 Duroc x Landrace x Yorkshire (DLY) pigs to extract significant single-nucleotide polymorphisms (SNPs) as genomic features. We compared two GS models, genomic best linear unbiased prediction (GBLUP) and genomic feature BLUP (GFBLUP), by using imputed whole-genome sequencing (WGS) data on 651 Yorkshire pigs. The results revealed that the GBLUP model achieved prediction accuracies of 0.499 for backfat thickness (BFT) and 0.423 for loin muscle area (LMA). By applying the GFBLUP model with GWAS-based SNP preselection, the average prediction accuracies for BFT and LMA traits reached 0.491 and 0.440, respectively. Specifically, the GFBLUP model displayed a 4.8% enhancement in predicting LMA compared to the GBLUP model. These findings suggest that, in certain scenarios, the GFBLUP model may offer superior genomic prediction accuracy when compared to the GBLUP model, underscoring the potential value of incorporating genomic features to refine GS models.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction [J].
Brondum, R. F. ;
Su, G. ;
Janss, L. ;
Sahana, G. ;
Guldbrandtsen, B. ;
Boichard, D. ;
Lund, M. S. .
JOURNAL OF DAIRY SCIENCE, 2015, 98 (06) :4107-4116
[2]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[3]   Single-step methods for genomic evaluation in pigs [J].
Christensen, O. F. ;
Madsen, P. ;
Nielsen, B. ;
Ostersen, T. ;
Su, G. .
ANIMAL, 2012, 6 (10) :1565-1571
[4]   Use of gene expression and whole-genome sequence information to improve the accuracy of genomic prediction for carcass traits in Hanwoo cattle [J].
de las Heras-Saldana, Sara ;
Lopez, Bryan Irvine ;
Moghaddar, Nasir ;
Park, Woncheoul ;
Park, Jong-eun ;
Chung, Ki Y. ;
Lim, Dajeong ;
Lee, Seung H. ;
Shin, Donghyun ;
van der Werf, Julius H. J. .
GENETICS SELECTION EVOLUTION, 2020, 52 (01)
[5]   The SWine IMputation (SWIM) haplotype reference panel enables nucleotide resolution genetic mapping in pigs [J].
Ding, Rongrong ;
Savegnago, Rodrigo ;
Liu, Jinding ;
Long, Nanye ;
Tan, Cheng ;
Cai, Gengyuan ;
Zhuang, Zhanwei ;
Wu, Jie ;
Yang, Ming ;
Qiu, Yibin ;
Ruan, Donglin ;
Quan, Jianping ;
Zheng, Enqin ;
Yang, Huaqiang ;
Li, Zicong ;
Tan, Suxu ;
Bedhane, Mohammed ;
Schnabel, Robert ;
Steibel, Juan ;
Gondro, Cedric ;
Yang, Jie ;
Huang, Wen ;
Wu, Zhenfang .
COMMUNICATIONS BIOLOGY, 2023, 6 (01)
[6]   Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions [J].
Druet, T. ;
Macleod, I. M. ;
Hayes, B. J. .
HEREDITY, 2014, 112 (01) :39-47
[7]   Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster [J].
Edwards, Stefan M. ;
Sorensen, Izel F. ;
Sarup, Pernille ;
Mackay, Trudy F. C. ;
Sorensen, Peter .
GENETICS, 2016, 203 (04) :1871-+
[8]   Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results [J].
Gebreyesus, Grum ;
Bovenhuis, Henk ;
Lund, Mogens S. ;
Poulsen, Nina A. ;
Sun, Dongxiao ;
Buitenhuis, Bart .
GENETICS SELECTION EVOLUTION, 2019, 51 (1)
[9]   Genomic selection [J].
Goddard, M. E. ;
Hayes, B. J. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :323-330
[10]   Accuracy of genomic prediction using imputed whole-genome sequence data in white layers [J].
Heidaritabar, M. ;
Calus, M. P. L. ;
Megens, H-J. ;
Vereijken, A. ;
Groenen, M. A. M. ;
Bastiaansen, J. W. M. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2016, 133 (03) :167-179