Oxygen diffusion impedance in proton exchange membrane fuel cells - insights into electrochemical impedance spectra and equivalent electrical circuit modeling

被引:3
|
作者
Ait-Idir, William [1 ]
Wu, Peizhe [1 ]
Sgarbi, Ricardo [2 ]
Labarde, Quentin [2 ]
Touhami, Salah [1 ]
Daoudi, Meriem [1 ]
El Kaddouri, Assma [1 ]
Perrin, Jean-Christophe [1 ]
Dillet, Jerome [1 ]
Marty, Clemence [3 ]
Micoud, Fabrice [3 ]
Chatenet, Marian [2 ]
Lottin, Olivier [1 ]
Mainka, Julia [1 ,4 ]
机构
[1] Univ Lorraine, CNRS, LEMTA, Nancy, France
[2] Univ Grenoble Alpes, Univ Savoie Mont Blanc, Inst Engn & Management, Grenoble INP Alpes,LEPMI,CNRS, F-38000 Grenoble, France
[3] Univ Grenoble Alpes, CEA, Liten, F-38054 Grenoble, France
[4] Univ Lorraine, LEMTA, ENSEM, UMR CNRS 7563, 2 Ave Foret Haye BP 90161, F-54505 Vandoeuvre Les Nancy, France
关键词
Proton exchange membrane fuel cell; Electrochemical impedance spectroscopy; Oxygen diffusion impedance; Electrical equivalent circuit modeling; CATALYST-LAYER THICKNESS; TRIPLE PHASE-BOUNDARY; GAS CHANNELS; AIR CHANNEL; SPECTROSCOPY; TRANSPORT; PEMFC; PERFORMANCE; ELECTRODE; CATHODE;
D O I
10.1016/j.electacta.2023.143430
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In Randles circuit, the oxygen diffusion impedance connects in series with the Oxygen Reduction Reaction charge-transfer resistance, implying that the Cathode Catalyst Layer (CCL) governs oxygen diffusion. The oxygen diffusion impedance can be connected in series with the ORR circuit, implying that Gas Diffusion Layer (GDL) rules oxygen diffusion. The common finite Warburg element and an alternative expression for diffusion through GDL derived by Kulikovsky were tested and compared. For this, experimental data obtained from measurements on various cells geometries, MEA types and operating conditions were used. All cases yield the same trend: the low frequency diffusion impedance in PEMFC mainly relates to the GDL, or both the GDL and the CCL, the latter to a significantly lower extent. EI spectra measured for different cathode Pt-loadings suggest that the ionomer film inside the CCL contributes rather to the high-frequency resistance, increasingly at lower catalyst loading. Hence, the physically most appropriate equivalent electrical circuit is a Kulikovsky diffusion impedance connected in series with the ORR kinetics circuit. Comparing global and local impedance spectra confirmed the significant contribution of perturbation-induced oxygen concentration oscillations to the low frequency loop in Nyquist plots: analyzing local impedance data measured near the oxygen inlet allows to minimize their impact.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Electrochemical impedance equivalent circuit model for zinc-air fuel cells
    Chen D.
    Pei P.
    Song X.
    Ren P.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (02): : 139 - 146
  • [22] Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells
    Le Canut, Jean-Marc
    Latham, Ruth
    Merida, Walter
    Harrington, David A.
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 457 - 466
  • [23] In-situ impedance diagnosis experiment and equivalent circuit modeling based on distribution of relaxation time method for unitized regenerative proton exchange membrane fuel cells
    Chen, Wenshang
    Meng, Kai
    Luo, Zongkai
    Zhang, Ning
    Deng, Qihao
    Chen, Ke
    Chen, Ben
    Chemical Engineering Journal, 1600, 501
  • [24] In-situ impedance diagnosis experiment and equivalent circuit modeling based on distribution of relaxation time method for unitized regenerative proton exchange membrane fuel cells
    Chen, Wenshang
    Meng, Kai
    Luo, Zongkai
    Zhang, Ning
    Deng, Qihao
    Chen, Ke
    Chen, Ben
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [25] Sensitivity Analysis of the Impedance Characteristics of Proton Exchange Membrane Fuel Cells
    Niya, S. M. Rezaei
    Phillips, R. K.
    Hoorfar, M.
    FUEL CELLS, 2016, 16 (05) : 547 - 556
  • [26] Impedance response of the proton exchange membrane in polymer electrolyte fuel cells
    Schneider, I. A.
    Bayer, M. H.
    Wokaun, A.
    Scherer, G. G.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) : B783 - B792
  • [27] Investigation of distribution characteristics of proton exchange membrane fuel cells based on localised electrochemical impedance spectroscopy
    Sun, Jiaqi
    Yang, Xiaokang
    Fang, Dahui
    Geng, Jiangtao
    Ma, Xiangneng
    Xu, Jiwei
    Li, Binbin
    Sun, Shucheng
    Shao, Zhigang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 98 : 887 - 897
  • [28] On the estimation of high frequency parameters of Proton Exchange Membrane Fuel Cells via Electrochemical Impedance Spectroscopy
    Mainka, J.
    Maranzana, G.
    Dillet, J.
    Didierjean, S.
    Lottin, O.
    JOURNAL OF POWER SOURCES, 2014, 253 : 381 - 391
  • [29] Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells
    Cha, Suk Won
    O'Hayre, Ryan
    Park, Yong-Il
    Prinz, F. B.
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 138 - 142
  • [30] Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells
    Deutsches Zentrum fuer Luft und, Raumfahrt , Stuttgart, Germany
    Electrochim Acta, 24 (3785-3793):