External stimulation-controlled dynamic DNA devices for biosensing and biomedical applications

被引:20
作者
Xu, Wei [1 ,3 ]
Hu, Feifei [2 ]
Li, Jiajing [2 ]
Shang, Jinhua [1 ]
Liu, Xiaoqing [1 ]
Zeng, Yan [2 ]
Wu, Qiong [2 ]
Wang, Fuan [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Coll Chem & Mol Sci, Dept Gastroenterol, Wuhan 430072, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Med, Wuhan 430081, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA device; stimuli-responsiveness; on-demand regulation; DNAzyme; biosensing; METAL-IONS; TRIGGERED RELEASE; NUCLEIC-ACIDS; MESSENGER-RNA; DNAZYME; DRIVEN; NANOSTRUCTURES; HYBRIDIZATION; NANODEVICE; CATALYSIS;
D O I
10.1007/s11426-023-1783-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA devices that can recognize molecular inputs and transform them into functional outputs in an autonomous manner have been actively pursued as versatile toolkits for controlled nanofabrication, molecular network regulation, biosensing and cellular function modulation. The introduction of external stimuli-responsive units not only ensures the programmability and functionality of DNA devices themselves, but also confers rapid, remote and reversible dynamic regulation capabilities. This facilitates on-demand activation and expands the application scope of dynamic DNA devices. Herein, an overview of recent advances in the construction of stimuli-responsive DNA devices that respond to different exogenous triggers, including physical stimuli (e.g., light, thermal, magnetic field, and electric field), chemical stimuli (e.g., supermolecules, pH, redox, and metal ions), and biological cues (e.g., protein, biomolecule, and nucleic acid), and their controllable nanofabrication and biomedical application have been provided. The current challenges and potential solutions of these externally responsive DNA devices for their future advancements in this emerging field are also discussed.
引用
收藏
页码:3105 / 3115
页数:11
相关论文
共 124 条
[1]   Remote Electronic Control of DNA-Based Reactions and Nanostructure Assembly [J].
Amodio, Alessia ;
Del Grosso, Erica ;
Troina, Alessandra ;
Placidi, Ernesto ;
Ricci, Francesco .
NANO LETTERS, 2018, 18 (05) :2918-2923
[2]   Dynamically elongated associative toehold for tuning DNA circuit kinetics and thermodynamics [J].
Ang, Yan Shan ;
Yung, Lin-Yue Lanry .
NUCLEIC ACIDS RESEARCH, 2021, 49 (08) :4258-4265
[3]   The Future of Molecular Machines [J].
Aprahamian, Ivan .
ACS CENTRAL SCIENCE, 2020, 6 (03) :347-358
[4]   Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field [J].
Bakshi, Saira F. ;
Guz, Nataliia ;
Zakharchenko, Andrey ;
Deng, Han ;
Tumanov, Alexei V. ;
Woodworth, Craig D. ;
Minko, Sergiy ;
Kolpashchikov, Dmitry M. ;
Katz, Evgeny .
NANOSCALE, 2018, 10 (03) :1356-1365
[5]   Magnetic Field-Activated Sensing of mRNA in Living Cells [J].
Bakshi, Saira F. ;
Guz, Nataliia ;
Zakharchenko, Audrey ;
Deng, Han ;
Tumanov, Alexei V. ;
Woodworth, Craig D. ;
Minko, Sergiy ;
Kolpashchikov, Dmitry M. ;
Katz, Evgeny .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (35) :12117-12120
[6]   Protein-Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators [J].
Bertucci, Alessandro ;
Porchetta, Alessandro ;
Del Grosso, Erica ;
Patino, Tania ;
Idili, Andrea ;
Ricci, Francesco .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (46) :20577-20581
[7]   Redox-Switchable Binding Properties of the ATP-Aptamer [J].
Biniuri, Yonatan ;
Luo, Guo-Feng ;
Fadeev, Michael ;
Wulf, Verena ;
Willner, Itamar .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (39) :15567-15576
[8]  
Bollu A, 2023, ANGEW CHEM INT EDIT, V62, DOI [10.1002/ange.202209975, 10.1002/anie.202209975]
[9]   Quadruplex DNA: sequence, topology and structure [J].
Burge, Sarah ;
Parkinson, Gary N. ;
Hazel, Pascale ;
Todd, Alan K. ;
Neidle, Stephen .
NUCLEIC ACIDS RESEARCH, 2006, 34 (19) :5402-5415
[10]   Allosteric Control of Oxidative Catalysis by a DNA Rotaxane Nanostructure [J].
Centola, Mathias ;
Valero, Julian ;
Famulok, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (45) :16044-16047