Numerical Modeling of Supersonic Flow with a Region of Heat Release by a Longitudinal-Transverse Discharge

被引:3
作者
Kornev, K. N. [1 ]
Logunov, A. A. [1 ]
Shibkov, V. M. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
CFD modeling; supersonic air flow; heat release in gases; transverse-longitudinal discharge; SURFACE MICROWAVE-DISCHARGE; PULSATING DISCHARGE; DC DISCHARGE; PLASMA; PARAMETERS; MECHANISMS; IGNITION;
D O I
10.1134/S0015462823600281
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Steady supersonic air flow in a diverging aerodynamic channel of rectangular cross-section is numerically simulated. The channel represents a laboratory model of an air-breathing straight-flow engine. The aerodynamic model is validated using the experimental data for the case in which the zone of volumetric heat release is absent. After the model has been validated a supersonic flow with a built-in zone of volumetric heat release was numerically simulated. Three-dimensional distributions of the velocity, temperature, and pressure in a steady supersonic air flow are obtained. It is shown that in the case, in which the volumetric density of the heat power of the source is equivalent to the mean total power of the discharge W = 10 kW, the discharge heats the gas up to the temperature T = 1700 to 4200 K, which leads to flow acceleration without its thermal choking. When the thermal power density of the source is equivalent to the mean common discharge power W = 20 kW, the gas is heated more strongly, up to 6700 K, but then local thermal choking of the flow occurs.
引用
收藏
页码:640 / 648
页数:9
相关论文
共 27 条
[1]  
Abramovich G. N., 1976, Prikladnaya gazovaya dinamika
[2]  
Boulos M.I., 1994, THERMAL PLASMAS, V1
[3]  
Chernyi G.G., 1999, 19994819 AIAA, DOI [10.2514/6.1999-4819, DOI 10.2514/6.1999-4819]
[4]   Simulation of a DC discharge in a transverse supersonic gas flow [J].
Dvinin, SA ;
Ershov, AP ;
Timofeev, IB ;
Chernikov, VA ;
Shibkov, VM .
HIGH TEMPERATURE, 2004, 42 (02) :171-182
[5]   Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology [J].
Enloe, CL ;
McLaughlin, TE ;
VanDyken, RD ;
Kachner, KD ;
Jumper, EJ ;
Corke, TC .
AIAA JOURNAL, 2004, 42 (03) :589-594
[6]   Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow [J].
Kopyl, P. V. ;
Surkont, O. S. ;
Shibkov, V. M. ;
Shibkova, L. V. .
PLASMA PHYSICS REPORTS, 2012, 38 (06) :503-512
[7]   Electrically Driven Supersonic Combustion [J].
Leonov, Sergey B. .
ENERGIES, 2018, 11 (07)
[8]   Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures [J].
Lin, Bing-xuan ;
Wu, Yun ;
Zhang, Zhi-bo ;
Chen, Zheng .
COMBUSTION AND FLAME, 2017, 182 :102-113
[9]   Influence of the Interelectrode Gap on the Main Characteristics of a Pulsating Transverse-Longitudinal Discharge in High-Velocity Multicomponent Gas Flows [J].
Logunov, A. A. ;
Kornev, K. N. ;
Shibkova, L., V ;
Shibkov, V. M. .
HIGH TEMPERATURE, 2021, 59 (01) :19-26
[10]   Gas dynamics of the pulsed electric arc in the transversal magnetic field [J].
Moralev, Ivan ;
Kazanskii, Pavel ;
Bityurin, Valentin ;
Bocharov, Alexey ;
Firsov, Alexander ;
Dolgov, Eugenii ;
Leonov, Sergey .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (42)