Evaluating the relevance of eggshell and glass powder for cement-based materials using machine learning and SHapley Additive exPlanations (SHAP) analysis

被引:27
作者
Amin, Muhammad Nasir [1 ]
Ahmad, Waqas [2 ]
Khan, Kaffayatullah [1 ]
Nazar, Sohaib [2 ]
Abu Arab, Abdullah Mohammad [1 ]
Deifalla, Ahmed Farouk [3 ]
机构
[1] King Faisal Univ, Coll Engn, Dept Civil & Environm Engn, Al Hasa 31982, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Civil Engn, Abbottabad 22060, Pakistan
[3] Future Univ Egypt, Dept Struct Engn & Construct Management, New Cairo City 11835, Egypt
关键词
Eggshell waste; Glass waste; Water absorption; Machine learning; Prediction models; SHAP analysis; FIBER-REINFORCED CONCRETE; WASTE GLASS; WATER-ABSORPTION; CONSTRUCTION MATERIALS; ELEVATED-TEMPERATURES; COMPRESSIVE STRENGTH; METHYLENE-BLUE; REPLACEMENT; PREDICTION; GEOPOLYMER;
D O I
10.1016/j.cscm.2023.e02278
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study used machine learning methods to predict the water absorption (W-A) of cement-based material (CBM) containing eggshell and glass powder as sand and cement substitutes. A dataset from the laboratory experiments consisting of 234 points and seven input variables was used to develop models, including multilayer perceptron neural network (MLPNN), support vector ma-chine (SVM), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost). Addi-tionally, a SHapley Additive exPlanations (SHAP) analysis was performed to investigate the relevance and interaction of raw components. When evaluating the prediction models for the W-A of CBM, it was found that the MLPNN and SVM models were moderately accurate (R2 = 0.74 and 0.78, respectively), while the AdaBoost and XGBoost models showed good agreement with the lab test results (R2 = 0.86 and 0.91, respectively). The SHAP approach revealed that while the cement quantity had a higher negative association with W-A of CBM, the quantities of eggshell powder, sand, and glass powder showed both favourable and detrimental correlations. Therefore, eggshell and glass powder must be used in optimal proportions of around 60 kg/m3 and 80 kg/m3, respectively, for maximum resistance to W-A. The AdaBoost and XGBoost models can potentially compute the W-A of CBMs by utilising various input parameter values, which may help decrease unnecessary test trials in labs. Furthermore, the SHAP investigation revealed the impact and relationship of the inputs on the W-A of CBMs, which might potentially assist researchers and the industry in determining the appropriate amount of raw materials during CBM production.
引用
收藏
页数:18
相关论文
共 92 条
[1]  
A. Astm C, 2013, STANDARD TEST METHOD
[2]   Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques [J].
Ahmad, Ayaz ;
Ahmad, Waqas ;
Aslam, Fahid ;
Joyklad, Panuwat .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
[3]   Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA [J].
Ahmad, Ayaz ;
Chaiyasarn, Krisada ;
Farooq, Furqan ;
Ahmad, Waqas ;
Suparp, Suniti ;
Aslam, Fahid .
BUILDINGS, 2021, 11 (08)
[4]   Alkali-activated materials partially activated using flue gas residues: An insight into reaction products [J].
Ahmad, Muhammad Riaz ;
Khan, Mehran ;
Wang, Aiguo ;
Zhang, Zuhua ;
Dai, Jian-Guo .
CONSTRUCTION AND BUILDING MATERIALS, 2023, 371
[5]   Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations [J].
Ahmed, Hemn Unis ;
Mohammed, Ahmed S. ;
Faraj, Rabar H. ;
Qaidi, Shaker M. A. ;
Mohammed, Azad A. .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
[6]   Experimental and simulation study on the impact resistance of concrete to replace high amounts of fine aggregate with plastic waste [J].
Al-Tayeb, Mustafa Maher ;
Aisheh, Yazan I. Abu ;
Qaidi, Shaker M. A. ;
Tayeh, Bassam A. .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
[7]   Experimental investigation on rice husk ash as cement replacement on concrete production [J].
Alex, Josephin ;
Dhanalakshmi, J. ;
Ambedkar, B. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 127 :353-362
[8]   Evaluating the compressive strength of glass powder-based cement mortar subjected to the acidic environment using testing and modeling approaches [J].
Alfaiad, Majdi Ameen ;
Khan, Kaffayatullah ;
Ahmad, Waqas ;
Amin, Muhammad Nasir ;
Deifalla, Ahmed Farouk ;
Ghamry, Nivin A. .
PLOS ONE, 2023, 18 (04)
[9]   Utilization of waste glass powder in the production of cement and concrete [J].
Aliabdo, Ali A. ;
Abd Elmoaty, Abd Elmoaty M. ;
Aboshama, Ahmed Y. .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 124 :866-877
[10]   Sustainable use of waste eggshells in cementitious materials: An experimental and modeling-based study [J].
Alsharari, Fahad ;
Khan, Kaffayatullah ;
Amin, Muhammad Nasir ;
Ahmad, Waqas ;
Khan, Usama ;
Mutnbak, Mohammed ;
Houda, Moustafa ;
Yosri, Ahmed M. .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17