Curvature Dynamics in General Relativity

被引:3
作者
van Holten, Jan W. W. [1 ,2 ]
机构
[1] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[2] Leiden Univ, Lorentz Inst, NL-2333 CC Leiden, Netherlands
关键词
general relativity; Weyl tensor; gravitational waves;
D O I
10.3390/universe9020110
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The equations of general relativity are recast in the form of a wave equation for the Weyl tensor. This allows reformulation of gravitational wave theory in terms of curvature waves, rather than metric waves. The existence of two transverse polarization states for curvature waves is proven and in the linearized approximation the quadrupole formula is rederived. A perturbative scheme to extend the linearized result to the non-linear regime is outlined.
引用
收藏
页数:12
相关论文
共 10 条
[1]   Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Badaracco, F. .
PHYSICAL REVIEW D, 2021, 103 (12)
[2]   Perturbative and gauge invariant treatment of gravitational wave memory [J].
Bieri, Lydia ;
Garfinkle, David .
PHYSICAL REVIEW D, 2014, 89 (08)
[3]  
Carroll Sean M, 2019, Spacetime and Geometry: An Introduction to General Relativity
[4]  
Einstein A, 1916, ANN PHYS-BERLIN, V49, P769
[5]  
Jokela N, 2022, Arxiv, DOI arXiv:2204.06981
[6]  
Maggiore M., 2008, Gravitational waves
[7]  
Schouton J., 1951, TENSOR ANAL PHYSICIS
[8]  
van Holten J.-W., 2019, Relativistic Geodesy, Fundamental Theories of Physics, V196, P393, DOI [10.1007/978-3-030-11500-512, DOI 10.1007/978-3-030-11500-512]
[9]   Pure infinitesimal geometry [J].
Weyl, H .
MATHEMATISCHE ZEITSCHRIFT, 1918, 2 :384-411
[10]   The Confrontation between General Relativity and Experiment [J].
Will, Clifford M. .
LIVING REVIEWS IN RELATIVITY, 2014, 17