Nonexistence and umbilicity of spacelike submanifolds with second fundamental form locally timelike

被引:0
作者
de Lima, Henrique F. [1 ]
Rocha, Lucas S. [1 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
53C42; 53A10; 53C20; MEAN-CURVATURE VECTOR; SITTER SPACE; HYPERSURFACES;
D O I
10.1007/s40065-022-00406-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumption that the second fundamental form is locally timelike, we establish new nonexistence and umbilicity results concerning n-dimensional spacelike submanifolds immersed with parallel mean curvature vector in the (n+p)-dimensional de Sitter space S-q(n+p) of index q, such that 1 <= q <= p.Our approach is based on a Simon's type inequality involving the norm of the total umbilicity tensor, obtained by Mariano in [17], jointly with suitable maximum principles due to Alias, Caminha and do Nascimento [6, 7] for complete noncompact Riemannian manifolds and a weak version of Omori-Yau's maximum principle for stochastically complete Riemanian manifolds proved by Pigola, Rigoli and Setti [20, 21].
引用
收藏
页码:151 / 160
页数:10
相关论文
共 23 条
[1]  
Aiyama R., 1995, Tokyo J. Math, V18, P81, DOI DOI 10.3836/TJM/1270043610
[2]   ON SPACELIKE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN THE DE SITTER SPACE [J].
AKUTAGAWA, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :13-19
[3]   A maximum principle at infinity with applications to geometric vector fields [J].
Alias, L. J. ;
Caminha, A. ;
do Nascimento, F. Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) :242-247
[4]   INTEGRAL FORMULAS FOR COMPACT SPACELIKE N-SUBMANIFOLDS IN DE SITTER SPACES - APPLICATIONS TO THE PARALLEL MEAN-CURVATURE VECTOR CASE [J].
ALIAS, LJ ;
ROMERO, A .
MANUSCRIPTA MATHEMATICA, 1995, 87 (04) :405-416
[5]   A maximum principle related to volume growth and applications [J].
Alias, Luis J. ;
Caminha, Antonio ;
do Nascimento, F. Yure .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) :1637-1650
[6]   Integral Inequalities for Compact Hypersurfaces with Constant Scalar Curvature in the Euclidean Sphere [J].
Alias, Luis J. ;
Melendez, Josue .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
[7]   Characterizations of Spacelike Submanifolds with Constant Scalar Curvature in the de Sitter Space [J].
Alias, Luis J. ;
de Lima, Henrique F. ;
dos Santos, Fabio R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
[8]  
Barros A., 2004, Kodai Math. J., V27, P45
[9]   NEW CHARACTERIZATIONS OF COMPLETE SPACELIKE SUBMANIFOLDS IN SEMI-RIEMANNIAN SPACE FORMS [J].
Camillo Camargo, Fernanda Ester ;
Barreiro Chaves, Rosa Maria ;
Machado de Sousa, Lutz Amancio, Jr. .
KODAI MATHEMATICAL JOURNAL, 2009, 32 (02) :209-230
[10]  
Chen JF, 2020, J INEQUAL APPL, V2020, DOI 10.1186/s13660-020-02469-8